GLM Lightning Data & Convective Insight

Assessing the various GLM lightning products, I found the MFA and FED particularly useful in correlating the more active thunderstorm core / updraft areas. TOE was useful, but maybe a slight change in color scale may help to better identify those very active convective areas. (perhaps the sharper color gradient change could start at a slightly higher value than currently)

Upper Left: FED img + Flash Point + ENTLN; Upper Right: TOE img + Flash Point + ENTLN Lower Left: Radar img + ProbSev + Flash Point + ENTLN Lower Right: MFA img + Flash Point + ENTLN

The GLM flash point data didn’t show as much ‘clustering’ as I had expected to see, as compared to other surface-based data sources (ENTLN). Is this related to a data display density or a more sensitive surface-based lightning detection? However, due to the parallax correction, the flash point data did line up with fairly well with active convection, although there were a few flash point detections well displaced from any radar reflectivities (see bottom left)–perhaps related to stratiform lightning?

– Guillermo

Tags: None

GLM in Northern Florida

Comparing the Flash Extent Density to base reflectivity in northern Florida, we noticed an area of exceptionally high flash density just north of the best convection. Adding flash points (parallax corrected) to the radar image and they were more where one would expect in the storm. This indicates a parallax issue with the Flash Extent Density. This is a good example of where the flash points can be a good sanity check when interrogating a storm.

Base reflectivity and flash points (left) and five minute Flash Extent Density (right).

– Earl Grey Tea and Fear the Shear

Tags: None

Florida lightning

Using GLM for an IDSS event  allows for great flexibility and confidence in providing warnings for decision makers.  In the image below, this shows a complex organization of thunderstorms. In this case, a lightning alert or warning for them.  In this case, since the thunderstorm structure is much more complicated, it is unlikely an all clear would be provided for some time.  It is likely this would be persistent through the afternoon as the surface front is pushing the sea breeze front back toward the coast and keeping the activity nearly parallel with the coast.   In this example, the FED product does provide the forecaster a good idea of the forward extent of the which is to the south and east, despite the fact the upper level winds are pushing the avils to the north.  The lightning points are also helpful to get an idea of where the potential return strokes are actually reaching the ground enveing though the GLM “can’t” actually 100% determine this but just based on the probability.  

Point flashes also provide the user with an idea of the size and potentially the ability to identify which core the lightning originated from.  Not sure how well this will work or if it will work but just a thought.  Think more work and or research will be required before we can say one way or the other if this will actually work.

– Strato-Dragon

Tags: None

Utilizing GLM, NUCAPS, ProbSevere and Optical Winds Through the Stages From Convective Initiation to a Tornadic Supercell

A moderate risk of severe storms capable of producing large hail, damaging wind gusts and tornadoes occurred across the Dakotas. My focus was in the Bismarck, ND CWA where storms were likely initiating in eastern MT and then moving into the very unstable environment across western ND. All of the higher resolution models were a bit late on storm initiation as storms began to fire between 3-4 PM CT. The experiment began around 2 PM CT, which allowed for mesoanalysis of the pre-convective environment.

A NUCAPS CONUS NOAA-20 pass occurred at 19z across ND and then again at 20z where the eastern edge of this pass overlapped with the previous pass across western ND. At 19z, a comparison was made between the NUCAPS profile and a nearby RAP sounding at the same time. Below Image 1 shows the locations of the NUCAPS profile versus the RAP sounding. This area was chosen as it was close to where the satellite was showing some potential for convective initiation and was just east of the dryline in the area where the better instability was to be present.

Image 1a shows the location of the chosen 19z NUCAPS profile.
Image 1b shows the location of the chosen 19z RAP sounding.

Using sharppy the two profiles were then compared simultaneously. Both Images 2 and 3 show the two profiles, but image 2 will be highlighting the NUCAPS profile and associated instability values and image 3 will highlight the RAP sounding with associated instability parameters. Looking at the two profiles, there is not much difference in the mid to upper levels between the NUCAPS and RAP. However, the NUCAPS profile struggles more with the boundary layer features and temperature/dewpoint. Looking at observations, the current temperatures near that sounding location at 19z was 86 deg F with a dewpoint of 70 deg F. The RAP seemed to initialize these surface values pretty well and the thermodynamic profile east of the dryline, along with a bit of a capping inversion in place. Meanwhile, the NUCAPS profile struggled with the temperature and dewpoint, thus under doing the moisture and instability parameters. The CAPE values are noticeably different with the NUCAPS profile much lower with the instability due to these surface differences.

Image 2 shows the sharppy comparison of the 19z NUCAPS profile (colored) versus the RAP sounding (purple). The parameter values below are calculated based on the NUCAPS profile.
Image 3 shows the sharppy comparison of the 19z RAP sounding (colored) versus the NUCAPS profile (purple). The parameter values below are calculated based on the RAP sounding.

After seeing the discrepancies with the observed surface values versus the NUCAPS profile, I decided to grab the modified NUCAPS profile for the same location for comparison. Image 4 shows this modified sounding with a 10 degree difference between the non-modified surface temperature. The modified sounding shows a 82 deg F surface temperature, while the original NUCAPS profile had 91 deg F. With the cooler surface temperature the modified sounding showed a similar inversion to the RAP sounding between 750-800mb. The dewpoint temperature also was better representative of the actual surface dewpoint, which helped increase the instability parameters significantly. NUCAPS profiles tend to be a tad lower on the CAPE values, so the fact that the RAP is still about 1000 J/kg higher is not a surprise. However, with no RAOB sounding available and comparing the RAP with the modified NUCAPS profile there is quite a bit of similarity between the two in terms of the thermodynamic profile. Lastly, as storms begin to fire in the next hour or so and no RAOB profiles closeby, it might be useful to compare and utilize the temperature heights (0, -10, -20, and -30 deg C) for radar interrogation as storms initiate. Knowing the RAP and modified NUCAPS profiles were similar then the heights from the temperature levels could also be compared. The RAP does show higher heights than the modified NUCAPS profile, so this is something to keep in mind and monitor as storms fire along the dryline.

Image 4 shows the 19z modified NUCAPS sounding plotted with NSHARP.

Keeping with the theme of NUCAPS, there was another pass at 20z further west (as mentioned at the beginning) that overlapped the 19z pass in parts of western ND. This included the town of Bismarck, where the office put out a special 20z RAOB sounding. Bismarck was a bit further east than the previous sounding, but was still in the very favorable environment. Images 5 and 6 show the comparison between the NUCAPS sounding at 20z and the RAOB Bismarck special sounding at the same time. Similar results can be seen between the observed sounding and NUCAPS profile where the CAPE values are again lower in the satellite derived sounding. This time the NUCAPS profile did a much better job with the surface temperature and despite the temperature profile being a bit smoother due to lack of detail in the boundary layer, the profile was overall pretty similar to the RAOB temperature profile. The dewpoint profile on the NUCAPS was much drier at the surface and therefore had a bit of a drier boundary layer than the observed sounding, which is likely why the CAPE values are also a bit lower.

Image 5 shows the sharppy comparison of the 20z NUCAPS profile (colored) versus the Bismarck RAOB sounding (purple). The parameter values below are calculated based on the NUCAPS profile.
Image 6 shows the sharppy comparison of the 20z Bismarck RAOB sounding (colored) versus the NUCAPS profile (purple). The parameter values below are calculated based on the Bismarck RAOB sounding.

Once again the modified NUCAPS profile was compared (Image 7 below). The modified profile did a better job at showing the moisture in the boundary layer and attempted to pick up the dry layer at 650mb, which was actually at 700mb on the RAOB profile. Unfortunately, the temperature was too low and therefore the modified NUCAPS temperature profile shows a very sharp capping inversion that was unrealistic. Overall, the CAPE values did increase with the modified sounding versus the original NUCAPS profile and were closer to the observed sounding. Twice it has been noted that the heights of the temperature levels were closer between the non-modified NUCAPS profiles with the model/observed soundings. There may be some calculation in the modified sounding that is causing the heights to be lower and maybe unrealistic. In scenarios where there is a RAOB sounding, that is the best picture of the atmosphere you can get but it is great to compare the NUCAPS profiles for comparison to future events and potential trends in the satellite derived soundings.

Image 7 shows the 20z modified NUCAPS sounding plotted with NSHARP.

As storms began to initiate across eastern MT, both G16 and G17 GLM were utilized to look for lightning instances in the growing storms. Having both satellites can be super helpful, especially when one viewing angle may not see the strike, while the other does. This happened several times during storm initiation where one satellite would pick up a strike, while the other displayed nothing. Images 8-9 show this occurring twice in two different storms where each satellite picked up a strike that the other did not. As mentioned before, the viewing angle may not be in a good position for the satellite to see the storm’s top and therefore the strike is not bright enough to be detected. Along those lines, the scattering properties in the cloud are also not visible by the angle of the satellite’s view point and could cause the satellite to miss a strike. Lastly, there is a quality assurance that occurs for each product and if the strike wasn’t strong or long enough then the pixel could have been tossed out during this quality assurance. This is why it is so important to utilize both satellites when possible and it is a best practice to err on the side of whichever satellite is showing more lightning is probably more accurate.

Image 8 shows local radar and GLM flash points (top left), GLM minimum flash area and NLDN/GLD CG strokes (top right), GLM flash extent density and ENTLN CG/IC flashes (bottom left), and GLM total optical energy (bottom right). This image shows the G17 flash point and corresponding GLM gridded products, while G16 does not pick up on a flash point or any GLM lightning.
Image 9 shows local radar and GLM flash points (top left), GLM minimum flash area and NLDN/GLD CG strokes (top right), GLM flash extent density and ENTLN CG/IC flashes (bottom left), and GLM total optical energy (bottom right). This image shows the G16 flash point and corresponding GLM gridded products, while G17 does not pick up on a flash point or any GLM lightning.

ProbSevere version 2 and 3 were compared through the afternoon. The trend continued with version 2 remaining about 20-30% higher in all categories except the tornado probs. Version 3 has leaned towards being slightly higher than version 2 when it comes to tornado probabilities. ProbSevere time series was utilized to track the southernmost storm along the line of storms headed into western ND during the mid afternoon hours. Both radars were pretty far away on either side of the storms, with Glasgow’s radar being slightly closer. The lowest elevation scan was at around 13000-14000 feet when velocity began showing a strong mesocyclone. Image 10 shows the time series of ProbSevere and the readout comparing version 3 with version 2. All four ProbSevere categories were steadily increasing through the last hour with version 2 remaining higher than version 3. Version 2 shows close to 100% probabilities for all but tornado, making this storm look like a slam dunk due to the environmental parameters.  Meanwhile version 3 is slightly lower due to the fact that it can pick up on similar storms that occurred in a similar environment with little to no reports (from storm data). This is where version 3 adds in a bit more information to create more realistic probabilities.

Image 10 shows the ProbSevere readout for the tornadic storm in eastern MT, along with the time series showing steadily increasing probabilities of all threats. Note the lowest elevation scan with radar is at ~13500 feet.

Based on the strong rotation in Image 10, the tornado probabilities were close to 30 percent which is relatively high and should give a forecaster confidence on issuance with a lack of lower level radar scans. Chaser footage also helped to back the need for a tornado warning with images of wall clouds, funnels and more being reported from multiple sources. Image 11 shows the time series for ProbSevere along with multiple other parameters. One thing that was interesting to see was the tornado probability drastically dropped in version 2 but remained steady in version 3. Since version 2 is heavily using az shear, you can see the drop in MRMS az shear (red line on second plot down on the far left), which could be correlated with that probability drop in version 2. Also, the MLCIN is slowly increasing (blue line on second plot down on the far right) and could be playing a bit of a role in this drop as well. This is where version 3 might have a leg up on version 2 when it comes to tornado probabilities.

Image 11 shows the time series of version 2 and 3 of prob severe probabilities along with various other useful parameters.

Lastly, the optical winds were utilized to see the winds at the top of the storm. Image 12 shows the optical wind field for 200-100mb. You can see the cooler cloud tops in satellite below the wind field and then the associated diffluence aloft. This is an indication of the very strong supercell that is showing no signs of weakening anytime soon. Also, it is of note that there is another cool cloud top signature a bit further to the northwest associated with another strong supercell with diffluence aloft. The optical wind fields are useful in knowing what is going on aloft and the potential strengthening or even weakening of a storm.

Image 12 shows the 200-100mb layer of optical winds over the supercell in eastern MT.

– Harry Potter

Tags: None

Comparing GLM Products from GOES 16 and 17- Wednesday

An approaching short wave trough as well as a remnant MCV moving through the area helped trigger thunderstorms over the upper Midwest.  Convection developed over Minnesota during the afternoon and evening hours.  Storms did not become severe near the Grand Forks, ND CWA until late in the afternoon. 

The upper Midwest is near the extent of coverage for both GOES 17 West and GOES 16 East.  This made it a good chance to compare how the GLM lightning products were affected by this issue.  Research has shown flash densities for both satellites diminish in this area, well away from the nadir of both satellites. 

Image 1 shows Flash Extent Density for GOES 17 on the left, and GOES 16 on the right.

The character and quality of the Flash Extent Density (FED) returns from each of the satellites can be seen, with GOES 17 showing a slightly westward tilt, and an eastward tilt in the returned grids for GOES 16.  The strongest storm in north central Minnesota has a higher and possibly better return on 17 than on 16.

Image 2 shows Minimum Flash Area for GOES 17 on the left, and GOES 16 on the right.

Values of Minimum Flash Areas from the satellites were quite different in some cases, and were also skewed as a result of the distance from the nadir of each satellite.  Placement of the flash areas also differed from “viewing” angle.

Image 3 shows Total Optical Energy from GOES 17 on the left, and GOES 16 on the right at 1958Z.

Total Optical Imagery (TOE) was also skewed.  It is interesting to note that the pixels of TOE in far southeastern ND change from minute to minute, as seen in Images 3 and 4.  At 1958Z, GOES 17 had an area of TOE returns along the ND/SD/MN borders, while GOES 16 had 2 separate areas, one in southern ND and one in west central MN.  By 1959Z, both GOES 17 and 16 agreed that there were 2 separate TOE returns in this region.

Image 4 shows Total Optical Energy from GOES 17 on the left, and GOES 16 on the right at 1959Z.

– Dana Scully

Tags: None

Analyzing the Performance of NUCAPS Gridded Forecast Parameters and GLM Comparison Between Satellites

Scattered strong to severe thunderstorms were popping up along the eastern ND and MN border today. However, these storms were struggling to become severe at times with a majority of the cells pulsing up and down. A NUCAPS pass around 19z provided gridded satellite observations and forecasts for the area to compare with SPC’s mesoanalysis page. The gridded NUCAPS at 19z shows CAPE (Image 1) values ranging from 500-1500 J/kg in the area mentioned above with little to no CIN (Image 2) present based on the gridded NUCAPS data. Image 3 below shows the SPC 19z CAPE/CIN data along with the forecast over the next 6 hours (through 01z). When comparing the 19z SPC mesoanalysis to the gridded NUCAPS, there was not much difference between the two with both showing higher CAPE values further south into Nebraska and Kansas. The gridded NUCAPS for CIN seems a bit erroneous with really no signature for -50 or less of CIN, which is present in the SPC mesoanalysis. This is likely due to the lack of detailed boundary layer features with NUCAPS and the fact that it may likely wipe such smaller inversions.

Image 1 shows the 19z gridded NUCAPS for CAPE.
Image 2 shows the 19z gridded NUCAPS for CIN.
Image 3 shows a loop of the MLCAPE/MLCIN forecast values for 6 hours (through 01z) from SPC’s mesoanalysis page.

Looking into the forecasted parameters from NUCAPS, there is a much higher bias in the CAPE values. However, they did a great job at pinpointing an area of higher instability to watch for storms to potentially become more severe with time. The overall CIN forecast looked as if it may start to increase further west near Grand Forks later in the evening, but in central MN where the corridor of CAPE values were higher remained uncapped. As time progressed through the afternoon a few storms did start to intensify and become severe across north central MN with a few severe wind reports. A few lingering surface boundaries were present, along with a weak shortwave at 500mb helped to enhance the storms a bit. I do feel the NUCAPS forecast values for CAPE were a bit too high in comparison to the actual environment and should definitely be compared to model data.

Image 4 is a loop of the 19z gridded NUCAPS forecast of computed CAPE over the next 6 hours (through 01z).
Image 4 is a loop of the 19z gridded NUCAPS forecast of computed CIN over the next 6 hours (through 01z).

Lastly, the location of storms yesterday provided the chance to compare the GOES-16 and GOES-17 GLM products with one another. However, image 5 shows the extent of the two satellites and GOES-17 was right on the edge of where storms were across the Upper Midwest. As you get further away from the satellite and towards the edge of its coverage, you can start to notice more of a tilt in the gridded data. This may cause some erroneous data as seen in comparison with GOES-16. Comparing the GOES-16 data (Image 6) with the GOES-17 data (Image 7), there is a better display of the minimum flash area and lightning sizes with the GOES-16. You can see GOES-16 shows more of a mixture of shorter and longer flashes (purple and yellow colors), while GOES-17 sees strong shorter flashes (yellow colors). Also, the further away the satellite is to the storms the more likely the flash extent density may be less accurate. This is likely due to the storms being on the edge of the satellite’s reach. Therefore it is important to check out both satellites when possible, but take into account where the storms are in respect to the satellites coverage.

Image 5 shows the areal coverage of GOES-16 (left) and GOES-17 (right).
Image 6 shows GLM through GOES-16 with the local radar (top left), minimum flash area (top right), flash extent density (bottom left) and optical energy (bottom right).
Image 7 shows GLM through GOES-17 with the local radar (top left), minimum flash area (top right), flash extent density (bottom left) and optical energy (bottom right).

Here are a few more supplemental images of the GLM GOES-16 satellite versus the GOES-17 with similar concerns as mentioned above.

Image 8 shows GLM through GOES-16 with the local radar (top left), minimum flash area (top right), flash extent density (bottom left) and optical energy (bottom right).
Image 9 shows GLM through GOES-17 with the local radar (top left), minimum flash area (top right), flash extent density (bottom left) and optical energy (bottom right).

– Harry Potter

Tags: None

Analysis of a Line of Storms Moving Across Northeastern LA into Western MS

Today we focused on the slight risk across the southeast, specifically WFO Jackson, MS. During the afternoon hours, a small linear complex was coming across northern LA towards Jackson’s CWA. Right before the CWA line, there was a wind report of snapped tree limbs of 3” diameter from Monroe Airport. There was also a measured gust from the airport of 41 mph. The velocity on radar had ~60 knot outbound winds at around 14,000 – 15,000 feet, which easily could have produced a few severe gusts to the surface. The gifs below show the linear line of storms and the associated velocity as the system moved over Monroe Airport in northeast LA with the wind report at 1952z and then continued to enter western MS.

Image 1 shows a loop of radar reflectivity with prob severe overlaid and Image 2 shows the velocity associated with the radar loop.

In this situation, prob severe was not doing as good of a job on picking up on these “stronger” winds. Image 3 below shows the time of the wind damage report and 41 mph gust at the airport in northeast LA, but prob severe and prob wind are both only picking up about 20% probability of this potential. Almost two hours later, the line of storms are a bit weaker on reflectivity but just as strong or even stronger on velocity. Note, the storms were also closer to the radar at Image 4, so the stronger outbound velocities were closer to the surface. So this led to wondering is prob severe a good indicator for straight line winds?

Image 3 shows the prob severe time series at the time of the damaging wind report at Monroe Airport in northeast LA.
Image 4 again shows a prob severe time series for the same line of storms about two hours later and approaching the western MS border.

Prob severe utilizes azimuthal shear which as seen in the Images 3 and 4 below are not present with solely outbound velocities and little to no inbound present. This is common for straight line wind scenarios, but not super helpful in terms of how prob wind is calculated. Also, the prob severe is an object oriented product that utilizes reflectivity for these objects. In this scenario, the reflectivity definitely began to weaken but velocity did not. The toughest part was the prob severe began to decrease over the two hour time span shown above, but yet several damaging wind reports of roofs blown off and trees/power lines down led me to believe the probability of prob wind should have remained constant or increased over time.

While investigating the prob severe I also took a look into the lightning characteristics within the line as you can see in the GIF below (Image 5) that there is the formation of some trailing stratiform on reflectivity. A still image was taken (Image 6) to show how the lightning began to extend westward into the light stratiform. The flash area (top right of the four panel) shows the darker purple color extending westward, which indicates the storm mode is more of that light stratiform rain with longer flashes extending through it rather than the intense small flashes within the leading line. This can be helpful in time when you may have a DSS event and the main line has passed through, but lightning is still present in the trailing light rain. Pairing the ground networks with the GLM extent and area allows a forecaster to give DSS on the latest CG stroke within the large area.

Image 5 shows a four panel with reflectivity (top left), GLM flash area (top right), GLM flash extent (bottom left) and GLM optical energy (bottom right). The ground networks have been added to the flash area with CG strokes and then over the flash extent with polarity and cloud flashes.
Image 6 shows the same four panel layout as described in image 5, but as a still image. This shows a great use of GLM for examining storm mode and flash extent, along with DSS uses of CG strokes within the large westward expanding extent of flashes behind the main line of storms.

Lastly, there was a NUCAPS CONUS NOAA-20 satellite pass at around 19z, which was well before the line of storms made it to the western Jackson CWA line. No special radiosonde launches were made by local offices, so the next best observational guess of the atmospheric profile would be from satellite. Model soundings were also available to compare at the time. A RAP sounding at 19z was taken just east of the western MS border (see Image 7 below for location of this sounding) and a very nearby NUCAPS sounding was also retrieved for comparison (see Image 8 below for location of this sounding).

Image 7 (left) shows the location of the retrieved 19z RAP sounding (circled in white) and Image 8 (right) shows the location of the retrieved 19z NUCAPS sounding (circled in white).

The soundings (Image 9 and 10 below) looked fairly similar between the model and satellite profiles; however, there were several major differences that played a key role in changing the instability parameters. The NUCAPS sounding was still slightly too low of a surface temperature with 86 deg F versus the RAP’s 89 deg F. Surface observations from 19z at that location showed a temperature of  around 91 deg F. Also, the surface dewpoint was far too low on the NUCAPS profile at the surface as it was 5 degrees below the current observation at 19z. Meanwhile, the RAP was only one degree lower than the current surface dewpoint. These subtle differences caused significant variations in the CAPE values.

Image 9 shows the 19z RAP sounding through sharppy.
Image 10 shows the 19z NUCAPS sounding from sharppy.

After realizing the NUCAPS profile was not accurately depicting the surface temperature/dewpoint, I decided to see what the modified sounding might look like through NSHARP. Image 11 below shows the modified NUCAPS sounding through NSHARP with a much cooler surface temperature of near 80 deg F. This was almost 10 deg below the actual surface temperatures and 6 deg below the original NUCAPS profile. The boundary layer was not representative due to this drastic difference and therefore the modified sounding had to be thrown out of the comparison.

Image 11 shows the modified 19z NUCAPS sounding shown through NSHARP.

Lastly, with knowing the line of storms were headed into the area of interest I decided to see how the forecast products were looking. Unfortunately, I did not get to save the images off in time as the forecast images disappear from AWIPS when the next pass occurs. So I was left with the web-browser version which is only in a gridded format. Unfortunately it is very difficult to depict changes in this format, whereas in AWIPS you can interpolate the image and smooth the results for a more concise display of values. Image 13 shows the comparison of the web-browser gridded format versus the AWIPS smoothed version for the West Coast pass of the NOAA-20 satellite.

Image 13 shows the gridded NUCAPS CAPE forecast for 6 hours in the future from the web-browser (left) and the same exact data and image displayed in AWIPS smoothed (right).

– Harry Potter

Tags: None

Lightning DSS for the Mississippi Pickle Fest

Our team, as WFO/JAN, chose the setup for the Mississippi Pickle Fest at 1150 Lakeland Drive Jackson, MS as our IDSS location today (Tue, 08 Jun).  Per SPC Outlooks, the Jackson area was on the “edge” of the Marginal Risk Area for severe weather.  As operations began for today, a thundershower was noted to the SW of Jackson, moving NE toward the IDSS location of interest:

KDGX reflectivity at 1926 UTC, with shower SW of Jackson/Pickle Fest. Range rings at 5/10/20 miles.
GLM and NLDN Lightning at 1932 UTC, showing electrical activity in thundershower SW of Jackson, MS.

A modified NUCAPS sounding from near Jackson, MS (which became available later), indicated plenty of instability/CAPE (2000-3500 J kg-1), suggesting that the thundershower would be maintained as it advected toward the Pickle Fest location.  This would be a good time for a “heads-up” to the event venue or EM.  The unmodified NUCAPS sounding (not shown) still suggested sufficient instability aloft for the storm to maintain itself.

The ProbLightning product on the Web, somewhat surprisingly, still showed only ~25% chance of a GLM lightning flash within the next 60 minutes at 2001 UTC, but this had increased to 75% by 2026 UTC:

By 2029 UTC, the electrical activity was nearly overhead:

Interestingly, the NUCAPS forecast CIN was forecast to increase over the next couple of hours (valid 22UTC, below), after the storm passed, but ahead of another, stronger line further upstream (not shown).

Based on this, and the rapid collapse of electrical activity within the shower around 2110 UTC, a reasonably confident “all-clear” could have been given to the venue at that time…or at least until the upstream line approaches in a couple of hours, assuming it holds together.

– ProfessorFrink

Tags: None

Using GLM

Using the minimum flash area to show where the smaller lightning strikes occur but is associated with stronger updraft with cells building faster (Yellow) to generate lightning. Larger lightning strikes occur in the stratiform area of the precipitation field where charge building is slower (Purple). This is also a good way to indicate convective mode as the system translates from individual (SuperCell) to a linear mode.

(Upper Left – ProgSvr/Ref), (Upper Right – Flash Extent Density), (Lower Left – Optical Energy), (Lower Right – Minimum Flash Area) Note the area of enhancement behind the main convective line. This is stratiform lightning strikes where the charges are slower to build vs. the convective linear line, and individual cells out in front of the storm.
Note the differences from the previous image as the Optical/FED and Minimum Flash Area has less flashes. This is due to the building of the charges.
A four panel of GR2 where reflectivity (Upper Left), and ZDR (Lower Right) depict linear striations (above melting level – 30 dBz) to show the build-up of charges in the stratiform area of the storm. A good way to use it is for IDSS and the likeability of lightning strikes developing.

Using NUCAPS (Modified vs. Unmodified). Why the CAP at mid-levels noted in Arkansas? Is this reasonable or an artifact of the program that isn’t real.

Unmodified
Modified

– wxboy65

Tags: None

Northern VA/Maryland Convective Episode on 6/3/2021

Image 1: 1943 UTC GOES East Mesosector Day Cloud Phase Distinction

The modified NUCAPS sounding from 1730 UTC revealed in excess of 2,000 J/kg of CAPE (image 2) and by 1900 UTC thunderstorms had developed in an area less shaded by high level cloud cover. Comparing this to RAP mesoanalysis data, it initially seemed too high as RAP mesoanalysis suggested closer to 1000-1500 J/kg (not shown)  and based on initial lightning activity. SBCAPE from NUCAPS was extremely high and close to 4,000 J/kg which seems very high (image 3). We did note that for some reason the NUCAPS forecast image showed CAPE being “missing” over central MD/northern VA while the CIN fill was more complete. When sampled over the “missing” data in AWIPS in the Cloud,  the readout showed actual values.

Image 2: NUCAPS Sounding near Washington D.C.
Image 3: NUCAPS CAPE and CIN forecast at 2100 UTC
Image 3: 2000 UTC 4 Panel of Day Land Cloud Phase

Initially, storms appeared to struggle with flash counts on the order of 10 to 20 flashes. Over the course of 30 to 45 minutes, lightning flash counts increased by an order of magnitude (closer to 100-150 flashes)

Closer to 2020-2030 UTC the rigor of convective elements increased and we started seeing transient echo overhang/along with some weak echo regions in tandem with an increase in both lightning activity as well as ProbSevere trends (especially ProbSevere3) as seen in Image 4. This increased our confidence in issuing our own warnings with LWX having a couple of warnings already issued.

Image 4: ProSevere Time Series just after 2000 UTC.
Image 5: LWX 0.9 Reflectivity Image near 2000 UTC
Image 6 and 7:(LEFT) ProbSevere Time Series around 20:30 UTC.  (RIGHT) 4 Panel (from top left to bottom right) of Day Land Cloud Phase Distinction, Radar+GLM FED, Day Land Cloud Convection + TOE, ProbSevere3 + GLM MFA

Closer to 21:50 UTC things became a bit more interesting from both a radar and lightning standpoint. Imagery from the KDOX radar (Central Delaware) suggested increasing mesocyclogenesis across Baltimore County (image 8) due north of Baltimore.

Image 8: 20:48Z 0.5 degree cut from KDOX indicating low level mesoscyclone.
Image 9: 4 Panel of ProbSevere, GLM FED, GLM MFA, GLM TOE at 20:45 UTC
Image10: 4 Panel of ProbSevere, GLM FED, GLM MFA, GLM TOE at 20:51 UTC

From a comparison of these images, there was certainly an indication that the updraft was increasing  as FED magnitude increased from 51 flashes/5 min to 99 flashes/5 min. MFA also became more concentrated NW of the City of Baltimore and Baltimore County as seen in images 9 and 10. WFO LWX issued a Tornado Warning around 20:51 UTC.

An animation of the TDWR at Baltimore Washington Airport (image 11) had signs of a possible low-level RFD surge (not shown) in the 0.5 degree rapid scan tilt and increasing low level rotation consistent with either a stronger surge of straight line winds or a QLCS mesovortex/tornado. Aloft, (not shown) there did appear to be healthy reflectivity aloft and the concentrated MFA may suggest that a strengthening updraft.  

Image 11: TBWI 0.5 Reflectivity and Velocity image at 20:50 UTC looking at tornado warned storm.

Image 11 from KDOX shows a loose mid-level mesocyclone with a gradual increase in ProbSevere3 with the time series. In this image, the storm was currently tornado warned by WFO LWX. At time we’d likely opt for a tornado possible warning and monitor very, very closely.

Image 12: 21:02 UTC Showing ProbSevere Time Series with KDOX 0.5 data (left panels) and GOES/GLM data (right panels) + ProbSevere

By 21:13Z The storm of interest is looking LESS favorable for tornado although prob severe tor increased significantly to closer to 20% perhaps due to an elongated zone of low level shear.

Image 13: 21:13Z KDOX Radar Imagery

Prob Severe Table Ideas:  If the tables could open in a floating tab in Awips that would be very helpful. This way you can manually dock and move the tab around in awips. This way you can quickly view the tab and keep it open until you want to just close it.  You can also rename the tab to whatever will help you keep track of the storm that it belongs to. This would get around needing to color code multiple tables etc.

A separate tab will also allow room to show additional information (beyond just prob severe).

Prob Severe jumped to nearly 80% with a fast moving bowing segment through Montgomery County.

Storm in question is the southeastern storm here.

– By Miles and Dwight Schrute

Tags: None