Observations from BUF on Thursday June 16th

Optical Flow Wind Storm Top Divergence Can Aid in Warning Operations

The storm of the day produced a 2.5” hail stone near Cato, NY.
Strong storm top divergence signals an intense or intensifying thunderstorm. Matched with upper level radar scans, satellite interrogation (clean IR), and ProbSevere, optical flow wind products may be another tool to aid the warning forecaster and/or storm scale mesoanalysis,  Below are the corresponding optical flow wind storm top divergence images approaching 4 PM EDT (3 PM CDT) when the sig severe hail was reported. The thunderstorm of interest is centered just south of eastern Lake Ontario.

LightningCast as Graphical Messaging/IDSS Tool

As the DSS and graphics person for BUF, I took the opportunity to highlight the utility of LightningCast for Graphical NowCasts and DSS graphics. The fairly broad brushed nature of the lightning probability contours at the timesteps utilized for graphics I think is a positive for a few reasons: they show actionable probabilities (10+, 25+, 50+, 75+) that users can understand; the contours are akin to annotations on a radar graphic, so would be a time saver; and finally, broad brushed is a way to prompt users and partners to seek out more information, like real time zoomed in radar data, perhaps calling or sending us a chat on NWSChat, or even simply keeping an eye on the sky and listening for thunder. The parallax corrected product in the images below I feel would be more useful for graphics of the nature shown below. Ultimately, for operational use, there would probably need to be some work done to ensure they are not confusing to the user and aesthetically pleasing.
Graphical NowCasts for our websites and social media
Graphic for IDSS Event

A Case for the Sharpened GLM FED Color Scale Used this Week

Over the course of satellite product interrogation this week, the GLM FED stood out as one of the most useful products.  Below are examples from in/near the BUF CWA at 2043z and 2047z. Note that the top of the color scale was set to 128 flashes/5 min over the grid point vs. the default 256 flashes/5 min in AWIPS. The FED also paired well with the MFA and TOE on this 4-pane procedure.
The color curve used this week really popped and correlated well with frequent ENTLN detections. Another example below from shortly after 6 PM EDT (2202 and 2207z)  shows that there will be instances where perhaps an even small color bar range would be useful.
While the strongest storm at this time still showed up well on the AWIPS default color bar range, the 128 flashes/5 min top end of the range (top right) helped it pop even more and corresponded well conceptually with the ENTLN cloud flash detections. Furthermore, the thunderstorms to the north of the strongest thunderstorm showed up better from an SA perspective, if you have been focusing on the strongest storm for warning ops. The smallest color bar range on the bottom left further enhances the above described effect.

Addendum: GLM Flashes and a more smoothed FED

The excellent COD NexLab Satellite and Radar page added within the past year the GLM flash centroids to their GOES derived overlays. From an apples to apples perspective with respect to the ground based lightning detection network displays, this may be a useful product to add into AWIPS.
\

Addendum 2: Would a more smoothed FED be preferable?

Below are a few web based examples of FED displays.
A case can be made that these smoothed FED examples would be somewhat less obtrusive than the default AWIPS FED display, especially for storm scale interrogation by the warning operator or storm scale mesoanalyst.
– Hurricane84

GLM Parallax and Lightning Cast Fun

The GLM data, specifically the FED data, was used to provide DSS to the Riverfest in La Crosse, WI.  After my first contact with the event POC, I noticed that the FED data was off by roughly a county from the ground-based lightning data.  This was my first time witnessing the parallax issue from the GLM and why ground-based lightning networks are a key component in confirming that the GLM location is accurate. In Figure 1, notice the intense concentration of the lightning just southwest of the event (20 mile and 5 mile radius rings) depicted by the GLM while the ENTLN/NLDN say that concentration is about a county south.   The parallax is evident in other lightning concentrations in and around the event circle.  I know it’s something being worked on to have the GLM data corrected to avoid this parallax issue, but it would be nice to have a map of the locations where the parallax is more evident in case you may not need the corrected version. Obviously, the further north, the larger the parallax, but not quite sure at what latitudes it really starts to show its hand. On a side note, for aviation purposes, the parallax could become problematic if the GLM lightning data is off by a factor of a county or two, especially if re-routing aircraft is occurring.

Figure 1: GLM Flash Extent Density compared with ENTLN data on June 15, 2022.

Figure 2: FED and ENTLN animation showing the GLM parallax.

I utilized the Lightning Cast to provide a probable end time of the lightning threat for the Riverfest event in La Crosse, WI.  This was a valuable tool as it provided some added confidence when the storms would exit the event area.  I did my best to line up the TOA tool with the 25 percentile contour. Once I got my estimated time that the end of the lightning threat would reach the event, then I added about 30 minutes to ensure it was well east of the event circle.

– PODIUM

Can PHS Improve Mesoanalysis and Near Term Convective Forecasts?

A large portion of the MKX CWA was included in a MDT severe risk, so by the start of the operational period, we had to assess the evolving severe threat spreading in from the west. Meanwhile, our DSS event was the Madison Jazz Festival, which entailed a focus specifically on south central Wisconsin. The PHS CAPE forecast appeared to be a noteworthy improvement from the CAPE fields on the SPC Mesoanalysis, along with the short-term forecast on that page.

Below are the 18z through 20z plots of MUCAPE, MUCIN and effective bulk shear from the SPC Mesoanalysis page.

Compare the above images with 4000 J/kg of uncapped MUCAPE to the PHS MUCAPE initialization at 18z and 2-hour forecasts (19z and 20z) below.

As you can see, while the SPC mesoanalysis was indicating 4,000 J/kg of uncapped MUCAPE, the PHS forecast showed CAPE decreasing across central and south central Wisconsin. This was an important and helpful piece of information for our DSS content for the Madison Jazz Festival.

The Day Cloud Phase RGB images below back up the PHS forecast vs the SPC mesoanalysis, as relatively flat Cu field over our area of interest actually dissipated between 20z and 22z.

Based on the PHS forecast combined with satellite analysis, we were able to focus the convective threat for the Madison area toward 6PM and onward, tied to the stronger forcing and better moisture arriving from the west where the ongoing convection resided closer to the cold front. It appears that the PHS sampling of moisture in the column applied to the near-term forecast strongly outperformed the SPC/RAP Mesoanalysis model background and OA algorithm.

Differences between the LightningCast (LC) CONUS and LC Mesos

Note below the CONUS scale (1st image) and Mesos (Meso Sector 2 on 6/15) had a different depiction of the lightning probability over northeast Iowa at 1911z 22Jun15. This was due to the time for a CONUS GOES-East scan to complete, vs. the much shorter time for a Meso sector, which in turn affects the LightningCast model. This is something to keep in mind when using the product.

ProbSevereV3 Trends for Severe Convection in Western/Southwestern Wisconsin

At 2106z, the ARX office had recently issued a Tornado Warning (2102z) for the northern cell with a high % on PSV3 and PTV3, per the noted superior calibration of the updated model vs. the V2. Could the PSV3 and PTV3 trend on this storm have assisted the radar operator in an increased lead time? As you can see below, starting at 2045z, there was a sharp upward trend in the ProbTor, to near 40% prior to 21z. At the least, this tool appears to be an excellent situational awareness tool, and may even be able to help lead time in some cases. It helped us in the MKX CWA regarding downstream warning issuances. In the event of an unexpected radar outage in a sparse radar coverage area, environmental analysis plus satellite interrogation with the utility of PSv3 could support successful radar warning ops in a less than ideal scenario.

– Hurricane84

Situational Awareness and Lead Time with LightningCast and ProbSevere/Tor

Today’s experience landed us in MKX monitoring convective development potential across the western portion of the CWA, with a line of storms ultimately moving in from the west, and some risk of discrete cells persisting even after we ceased the experiment.

I took the opportunity today to set up procedures overlaying PHSnABI indices (CAPE) with satellite imagery (e.g. Day/Cloud Phase or Viz), to see how well it corresponded with convective development. Unfortunately I didn’t grab a screenshot, but it was a nifty display that I hope to use again. PHSnABI suggested that CAPE in some areas of the CWA was not as high as the SPC mesoanalysis or RAP suggested. We tried to investigate this using a combination of NUCAPS and model soundings and RAOB, but couldn’t figure out a reason for the CAPE depression before incoming storms grabbed our attention. Notably, the indices derived only from GOES agreed with PHSnABI about this depression, though we couldn’t figure out if it was correct. It seems likely the GOES ABI was driving the PHSnABI result.

My main takeaway the rest of today is how useful ProbSever, ProbTor, and LightningCast can be with approaching/developing convection.

LightningCast, combined with GLM data, was useful for IDSS imagery to depict position and potential of lightning (example DSS slide using these graphics provided below).  Storms never made it to our decision point prior to leaving the experiment, but lightning threat was usefully communicated to the simulated JazzFest event.

As convection developed, we also practiced relying on probSevere and probTor for lead time in anticipating warnings. The following shows an example where the probTor trends corresponded well with ARX’s actual decision to issue a tornado warning.

SImilarly, intensification of the convective line appeared to be well detected. In fact, depending on what threshold of the probSevere parameters is relied on (probably depends on environment and other factors), the escalating value could have given useful lead time for a severe issuance decision.

Although the main mode appeared to be a line of convection, there were positions along the line where tornado risk seemed to increase (evidenced by radar velocity). It was reassuring to see probTor pick up on the gradually increasing risk of tornadoes as well.

And one final note… lightningCast is fairly impressive in how it produces calibrated estimates of lightning occurrence using only a single time step of satellite imagery (though it uses several bands of the ABI). Naturally lightningCast has difficulty where a developing tower is obscured by an anvil overhead, as we saw in this example. But it was neat to see lightningCast immediately respond with a broader swath of high lightning probabilities the very first time that a tower poked above the anvil that previously obscured it.  The fact that it was hidden probably means lightning could have been occurring below the anvil with lower than ideal lightningCast probabilities (though non-zero, to its credit), but it was neat to see the immediate adjustment to the probability contours with new imagery.

– Buzz Lightyear

A Close Look at LightningCast for the Application of DSS or TAF Support

On June 15th 2022, a dynamic setup was unfolding across Iowa, Minnesota, and Wisconsin with multiple hazards that NWS forecasters would have had to message and warn. For this case, we were on watch for a DSS event representing the Cranberry Blossom Festival in Wisconsin Rapids in the GRB CWA. The main concerns with the event were lightning and any severe storms, both of which seemed certain for this case and the name of the game was timing the oncoming convection.

LightningCast uses machine learning with numerous satellite inputs that yields the probability of lightning occurring at a location within the next hour. This product immediately jumps to the front of a forecaster’s mind to apply for decision support services (DSS) or assessing lightning probability for airport forecasting. Below is a table showing the probabilities from LightningCast versus the “time of arrival” tool that estimated storm timing based on the movement of storms:

First vicinity lightning strikes (within 10 mi of event): 4:21 PM
Arrival of storms (within 10 mi of event): 4:30 PM
Immediately the usability of this product is fantastic. It shows the probabilities of lightning occurring in a contour format, making it a great pairing with satellite imagery, lightning data, and radar. WIth this case being a very well forced event the main evaluation was the percentages and how they did with the advection of the storms. The LightningCast seemed to ebb and flow with the eastward acceleration and deceleration of the storms between 3 and 3:30 PM, while the next 15 minutes showed accelerating storms, giving a 61% chance of lightning within the next hour at 3:45 PM. With the acceleration of the storms, it was good to see the model adjust, with the 50% threshold being crossed before 3:45 PM. The 50% threshold is very important for forecasters, as values above that are typically  used in several products and gauges of confidence. The LightningCast model giving upwards of 40 minutes of lead time for advecting storms gives me a lot of confidence in the product, leaving me wishing it was already available within our datasets for immediate use.
– aerobeaver

GLM and ProbSevere – Day 2

Utilizing the GLM data for DSS and severe weather operations is vital in providing timely and quality information to our partners and the public.  In this instance on Tuesday, June 14, 2022, we were monitoring storms near a DSS event (baseball tournament) located in Panama City Beach, FL.  You can see the location marked as Home on the following animations.  Two main forecast concerns, isolated convection along the beach due to the sea breeze and a line of storms moving south west out of SE Georgia into northern Florida heading toward the DSS event.

The first, and most imminent concern, was focused on the isolated storms developing along the sea breeze front throughout the FL Panhandle. The main threat with these isolated storms was lightning and brief heavy rain.  Utilizing Day Cloud Phase Distinction RGB overlaid with GLM Flash Extent Density, Minimum Flash Area, and Total Optical Energy was used for the DSS provided.  A line of CU developed to the east of the event moving westward.  Again, the main concern was with lightning but certainly with the amount of instability (DCAPE present), downbursts could pose a threat as well.   Utilizing the GLM data, they were able to contact the event POC to notify them of the lightning threat to the east and if held together could reach the 10 mile radius within next 1-2 hours (21-22z).  What helped with the lightning briefing was the short intensity shown on the TOE and MFA within that storm to the east of Home. It quickly weakened and we were able to notify the event coordinator of this information providing them with further confidence to not have to evacuate their facility during the tournament.

The second concern for the event was the line of storms to the northeast in GA/northern FL moving southwest toward the event.  The great news about this storm was the very very slow movement southwest.  Thus, the threat of lightning and gusty winds would hold off for a considerable time frame.

– Podium

Greenville SC Observations

Synopsis: A deep upper low tracked slowly northeastward across Missouri today. The main cold front associated with this low moved across the Greenville, SC region. Along and ahead of the front, widespread showers and thunderstorms continued over western South Carolina for most of the afternoon and evening hours.

Our DSS messaging was for Softball Tournament Games located at Clemson University.

SPC Convective Outlook: Slight risk of thunderstorms over extreme northwestern SC, with marginal risk elsewhere.

Primary threat was wind flash flooding and wind with a chance of hail and a possible tornado.

Scattered showers and thunderstorms tracking northward across the forecast area.

IR imagery overlaid with lightning data.

Greenville ACARS sounding taken in 1910Z.

NUCAPS Sounding nearby Greenville.

Another NUCAPS Sounding nearby Greenville.

Mesoanalysis – Surface CAPE values ranging from 500 to 1,000 J/kg.

PHS showing similar instability parameters.

Watches/Warnings products issued throughout the day by WFO Greenville.

ProbSevere3: Low probability of severe weather, but sufficient enough for storm warning operations and convective maintenance situational awareness.

GLM Basic – Helped with operations as well as DSS.

GLM

GLM

Lightning Cast overlaid with satellite was helpful for enough lead time and confidence.

Lightning Cast overlaid with radar.

Lightning Cast overlaid with satellite.

Radar overlaid with Polygon Warnings issued throughout the day.

DSS update: A Flash Flood Warning was issued for Northwest South Carolina near Anderson county and remained in effect until 9:00 PM EDT.

Latest update on ProbSevere3 and tracking any nearby storms.

Latest update on GLM.

SPC Mesoscale Discussion. Thunderstorms intensified across northeast GA into upstate SC, near and south of a warm front that slowly lifted northward toward western NC.

Storm velocity showing gate-to-gate or small rotational couplets near Ware Shoals and Spartanburg.

Vortex Power

Louisville KY WFO Observations During DSS

LightningCast

Immediately after coming online, there was the potential for heavy showers in my area of concern and a storm heading toward an established DSS Event. Initially, LightningCast showed a 50%-75% chance of lightning within the next hour, but this was monitored in successive frames as the trend continued downward.
This product gave me the situational awareness to immediately know that I should be interrogating a storm heading toward my DSS event without an in-depth analysis across multiple radar/satellite products. I continued to monitor the product as I got the rest of my AWIPS setup and I noticed the downward trend continued for my storm of concern. This simple display along with GLM flash data (on a 0-50 scale for this storm mode) gave me confidence in analyzing this as a low-end threat. This has an application in the operational shift change where a new forecaster can have two simple products loaded on a screen with rapid updates indicating that a DSS area is increasing or decreasing its likelihood of seeing lightning within the next hour. These two products in tandem are not only useful operationally, but as a base situational awareness tool.
Initial LightingCast/GLM view of the storm moving toward the DSS event area.
Visually the trend decreased after this initial probability. It would be very useful to have these plots available in AWIPS to view the increasing/decreasing probabilities associated with perceived storm growth and decay.
 
After the initial spike (which occurred as I was logging on), you can see that with no observed strikes and the probabilities staying constant, there was no initial concern.
The trend continued with a subsequent steady decrease in probability.
Another storm the south became the main concern with a Significant Weather Advisory (SPS) issued for its growth and subsequent wind threat. In this case, I think LightingCast is doing a good job at highlighting the advection and limiting the probabilities over my area based on its current (pictured) motion.
LightningCast and GLM plotted with a current storm motion and Time of Arrival tool to show that it is expected to miss the DSS event at this current time. However LightningCast did put the area in the 75% contour at 20:26Z
Our DSS event was impacted by a separate storm just north of this main storm at 20:33Z. There were no cloud flashes ahead of the CG strike and LightningCast did a good job of highlighting the area as potential increased at 20:26Z, but this was only a lead time of 7 minutes. After this observed CG strike, LightningCast dropped the probabilities to around 50% despite observed strikes occurring within the previously outlined 75% area. Thick clouds around the area from previous and advancing convection were observed over the entire area.
Lightning has been observed near the DSS Event ahead of any observed cloud flashes at 20:33Z. LightningCast only gave a 7-minute lead time with this quick-pulsing storm.
With lightning ongoing and observed within the 75% contour,, LightningCast dropped the probabilities to ~50% at 20:45Z.
This was the LightningCast trend at the time of ongoing, observed, lightning.
The trend remained steady after the lightning was observed and continued through the next couple of hours as the storm following this one weakened and moved over the DSS event area.

GLM

GLM performed quite well over the area today, especially as the storms were strengthening. The MFA and FED were again useful in identifying potentially stronger storms and where to focus my attention. This was again useful outside of supercellular convection. I was surprised with how well GLM performed with dense cloud cover from ongoing convection to the south and debris clouds left over from convection earlier in the day.
In dense cloud cover, MFA and FED were able to recognize an area of convection pulsing once it left my DSS event area. This could be useful in a similar situation where the organizer of an event recognizes increased lightning in their area and is looking to return to operations (most of the EMs and organizers have lightning notifications from several ground-based detection networks and frequently interrogate us about ongoing trends). I would be able to use this as a tool to see that lightning near the event is a continued concern because of potential backbuilding around a strengthening storm.
GLM suite showing a pulse in a storm near my DSS event area.
Overall, GLM was very useful in tandem with the LightningCast products for showing growth and decay in ongoing thunderstorms.
A strengthening storm to the south of my event area shows not only FED increasing, but also sees the LightningCast 75% contour expanding northward likely due to advection of the storm. The scale in this image is FED on a range of 0-50.

PHS

PHS again performed well on the 0-2 hour timeframe. The primary fields of interest were instability (CAPE, LI) and the SigTor parameter.
PHS model data with instability, LI, and SigTor. This is a model forecast of 1-hour for the 19Z time period which was initialization in our DSS simulation.
PHS was already highlighting the area of concern along a tongue of instability where storms were ongoing as of the 19Z 1-hour forecast. In subsequent frames, it shows the instability being maintained as storms move toward my DSS area despite thick cloud cover overhead. Based on previously discussed trends in observed lightning, it seemed it was accurately showing areas of marginal but sufficient instability.
One impressive feature of the PHS model was a thin line of instability on the back edge of convection. This area was a focus for several isolated thunderstorms behind the main line advancing through northern KY as of 21Z. This was a 3-hour forecast pictured above with highlighted areas of instability by low STP, highlighting an insufficiently sheared environment.
It is worth noting that within this study/testbed, we are looking in areas of Slight Risk or higher as highlighted by the SPC as our area of interest. In an operational setting, it is fairly uncommon to have severe weather events only when the area is highlighted in the Slight or higher category. Therefore, it is unlikely that the SigTor parameter would be useful outside of high-profile events. For example, at my local WFO, we have many severe weather days where we have very high CAPE, but very little in the way of shear. Since our primary concern is usually wind, I don’t think SigTor would be useful. It may be worth adding additional parameters highlighting various threat potentials (wind, hail, etc.).

ProbSevere v3

I was not the warning forecast in this instance, but I did notice that a couplet of rotation was observed on the MRMS rotation tracks. Based on radar data (it is worth noting that this storm was at a large distance from the radar), the couplet was well within the bounds of a rotating couplet with vertical continuity and frame-to-frame consistency.
However, ProbSevere only had a tornado probability of around 10% which should have been higher given the available radar data. This couplet was short-lived, but survived for a few frames after its initial detection. Probabilities did increase, but were not high enough for what I would have expected to be a weak tornado given the surrounding data.
ProbSevere 4-panel showing overall severe potential, hail, wind, and tornado probabilities. According to the data, all of the probabilities remained low, including TOR which should have been higher in this case. This is also supported with MRMS rotational measurements and KLVX radar data.

Optical Flow Winds

With the widespread convection across my area and the long-term cloudiness, I did find some correlation between the Optical Flow Winds and the strongest storms over my CWA (LMK). This was similar to the Birmingham area yesterday, but the stronger storms were not as pronounced in yesterday’s case. CAPE profiles were a little more pronounced today across central KY which likely contributed to this advantage. However, it was still hard to pick out the exact divergence value with these storms, but there were obvious hot spots that helped with situational awareness.
The strongest divergent cells were more obvious on the OFW display today and they lined-up with the strongest cells across the LMK CWA.

NUCAPS

NUCAPS data was unavailable today and the passes did not line-up with our area. Even if we had some data available, there would have likely been too many red-retrievals to make use of the soundings due to widespread thick cloud cover.
– Overcast Ambience

DSS in the Birmingham CWA

 PHS

The initial outlook on the PHS model shows limited potential in the CAPE and STP in this area around the DSS at 20Z. However, it shows an increased potential for 21-22Z which may be the time of most concern for my DSS area.
The initial 20Z model showing limited instability and the contoured ProbSevere to show ongoing convection.
PHS shows a tongue of instability and associated STP as the main convective line lifts northward. This would indicate that the main concern would occur around 22Z.
Based on the line of storms to the west of our DSS event and the associated shower activity lifting northward ahead of the line, the PHS model was accurately representing the convective potential. LightningCast also shows a decrease during this time period which increases consistency and confidence in what the forecaster is seeing.
“Verification”
 
This lack of convection was observed as showers moved through the area without any lightning or wind potential. There was some redevelopment behind the line and to the south of our event that indicated some concern. At 22Z, you can see the line of storms already being analyzed by ProbSevere lining up nicely with modeled instability and other plotted severe weather parameters.
ProbSevere contours and PHS model line up nicely in the 22Z 2-hour model forecast and show consistency in where the area of greatest concern is likely to be.

LightningCast & GLM for DSS

Initially the LightningCast for our DSS event surged to near 50% or slightly above. This was an initial concern for the DSS area.
As these storms weakened, the probabilities of lightning also fell to under 25%. I liked that these probability decreases were not rapid, but a gradual fall after the initial peak. GLM and LightningCast both had a consistent drop in probability and lightning activity as the “storms” weakened.
It is becoming clear that the rate of change of all of these satellite products is the most important information that a forecaster can gain. While an initial picture of the probabilities looks concerning, pairing this with other satellite products for context and seeing the overall trend of this data led to an easy decision to wait for additional data. Taking this at face value would lead to a quick (and potentially unnecessary) reaction.
Initial threat of lightning as illustrated by the LightningCast product.
The showers on the SE side of this line have decreased in intensity and have lost most of their lightning potential. The probabilities have decreased accordingly.
LightningCast, GLM, radar, and satellite showing the decreasing trend in lightning threat and the approach of moderate to light showers on the DSS event.
Showers are expected within the next 30-40 minutes and the trend in lightning appears to be going down consistently. GLM has also been helpful in showing that no cloud flashes have been observed at this stage.
There were some minor inconsistencies that I noticed since the Meso-sectors were both over our CWA. These were mostly minor, but I noticed at one point, a location had a probability of >50% or 0% and did not intersect with GLM measurements.
Inconsistencies in GLM and LightingCast Meso1/Meso2 probabilities. It seems the accurate probability here was 0% based on the lack of ground-based lightning network reporting.
As PHS indicated there was a second and more concerning wave of convection moving from the SW toward the DSS event area later in the afternoon. GLM and LightningCast probabilities both show the strengthening of this pulse and the increased lightning activity as it moved into the BMX CWA.
21:26Z, the storm indicated a 10% chance of lightning at the DSS event area.
21:36Z, the storm indicated a 50% chance of lightning at the DSS event area.
The 45-minute warning was given at 21:50Z to the event coordinator that a storm with the potential of producing lightning and winds in excess of 30 mph was approaching the event area. GLM was a key part in this decision as it continued to show strengthening with lightning pulses indicating that the storm was at least maintaining its strength. The LightningCast probabilities were also increasing as they approached the area with the 75% contour moving into the area by 21:52Z.
GLM (top) and LightningCast at the 45-minute DSS decision point.
The pulses weakened significantly as it approached the area and this was consistently evident in the GLM display and the LightningCast probabilities.
GLM (top) shows the MFA increasing and the FED decreasing. This was consistent with radar data and observed lightning pulses. The LightningCast probabilities also decreased.
Lightning occurred in the area around 22:38Z with GLM showing another pulse beginning as the storm moved through our DSS area.
In general, I found GLM to be much more useful today outside of the supercellular mode with more multicellular convection observed over central and southern AL and especially so for identifying strong cells within a linear structure.

ProbSevere v3

In a DSS setting there isn’t a real reason to use ProbSevere v3 because winds far below the 50-knot threshold could cause problems at our DSS events. That being said, there was great information in the trend graphic as I could see the growth and decay of storms that were already in progress. This allowed me to focus my attention on the strongest storms.

NUCAPS

Ongoing convection ahead of the line of storms limited the NUCAPS ability to produce good data. Availability of soundings was also an issue as the data came in between 19-20Z with storms ongoing near my area of interest.

Optical Flow Winds

For the optical flow winds, there wasn’t much in the way of DSS that I could find a use for. The divergence field again could be useful, but with the suite of GLM I was seeing the divergence and strengthening of the storms in multiple products. Visualization is still the main hurdle with OFW.
Once the anvil for some of these storms developed it was difficult to use. Especially as debris clouds developed and overspread the area in advance of additional convection behind the initial line.
– Overcast Ambiance

Monitoring Scattered Convection in northern IN & Tin Caps DSS

I decided to submit a quick DSS briefing for the Fort Wayne Tin Caps with DCPD indicating glaciation and weak echoes on radar. LightningCast was starting to increase over northern IN for that weak developing convection. Additional convection is spreading in from the south, and higher LightningCast contours are also spreading in. PHS shows increased CAPE over the next hour.

Left: DCPD with GLM and LC. Right: Base reflectivity with LC

Loop of base reflectivity and LC from 1938 to 2014Z:

Left: PHS forecast CAPE at 20Z. Right: PHS LI at 20Z

First GOES flashes a little after 20Z. DCPD with GLM FED and LC

However, by 21Z, lightning is limited pretty much to cells to the northwest and E/NE of Fort Wayne.

Happily, LightningCast called the lightning flash east of Fort Wayne about 10 minutes out (small pink circle east of Fort Wayne)

Why is barely anything happening? Convection looks to be “firing” now on an instability gradient. Indicated by PHS at 21Z:

Am I confident that things will ramp up at all for our area within the next couple of hours? So-so. Here is PHS CAPE and LI for 21Z.

And gridded NUCAPS 850-500mb lapse rates at 1730Z, ranging from around 4.5-6C/km

However, zooming out, there is an area of convection across central IN that should begin approaching our southern CWA boundary within the next half hour. Here is the GLM 4 panel with GOES clean IR underlaid with the FED, at 2130Z.

– PoppyTheSmooch