BMX – Daily Updates

GLM proved useful early on in combination with MRMS VII. It showed areas of strengthening storms that were reflected in radar later. A pair of severe warnings were then issued.

This was a good prob severe null case where odds remained steady along with stationary or declining GLM values. A correct no-issuance followed even with base velocity showing 50 kts or so of wind on the lowest scan. Some other prob severe oddities occurred during the day such as odd object tracking and weird percentage changes. QLCS tornado odds seemed too low as discussed. Overall though, it continues to provide useful information.

The PHS forecast again correctly identified the highest risk areas where storms strengthened and tracked. It mirrored other sources so I would still like to see if overall it is better or not.

Prob severe highlighted this storm ahead of time before it went severe in Mobile’s area.

NUCAPS provided limited use today. Overall, heavy cloud cover limited usefulness of a number of products compared to the clearer case in Texas the day before.

Some Random Guy

MAF Testbed Observations

ProbSevere v3

For the initiation of convective storms, I found that the ProbSevere performed the best over the other products available to me today. I have seen over the last couple of days that the best use of ProbSevere is the trend table. The steep increase in these total severe values support radar trends that suggest a warning is necessary. For the initial warning on severe storms, this was the best use.

The only negative to this product was the latency. While the latency was only on the order of 2-5 minutes, this was equivalent to appx. 2 radar scans that indicated to me ahead of time that this storm was strengthening. This can lead to some confusion especially if the storm is quickly pulsing and falling.

Additional upticks were noticed in subsequent SVR issuances throughout the afternoon that provided a nice heads-up in conjunction with the radar data. These were used in the context of the storm maintaining its strength after the storm was warned and again after the storm re-pulsed several minutes later.

It is also worth mentioning that the perceived threat of ProbSevere was also the shared opinion of the forecast (forecaster perceived threat for hail had the highest ProbS. probability). Once the storms reach the “cap” of their ProbSevere, it becomes of little use.

GLM

GLM was useful during convective initiation, but did best for storms that were already at the peak of the ProbSevere threshold. GLM showed additional pulses in a mature storm that had a 90% probability of being severe and added confidence to the warning forecaster that the storm had gained additional strength which manifested itself in larger hail for example.
It was however short-lived as the storm gained additional intensity but did not show the corresponding increase in GLM FED that one would expect. This was explained as a limitation due to the structure of a mature (and severe) thunderstorm.
Min Flash Area also reached its lower values on several storms which provided little to no additional data. Maybe this used in conjunction with total optical energy would be useful, but this yielded no significant results when investigating briefly.

PHS Model

The PHS model was very useful today ahead of convective initiation, but more so in an advective situation.
Instability parameters were observed as ongoing severe storms moved SW toward the established instability gradient. ProbSevere outlined areas are moving SW in the image below across an area of relatively high CAPE and low LIs. This provided useful information about the existence of a boundary and the motion of the storms along with the pre-conditioned environment.
The model did have limitations as the storms became ingested into the later runs of the model and the storms showed developed cold pools. The environment depicted in this situation had become dominated by nearby cold pools of incorrectly placed convection which limited the model’s usefulness.

LightningCast

Not much use of the lightning cast today due to the lack of CI within our CWA, but we did get a chance to look at the advection of lightning. In general, this proved to be a little too slow. It seemed the contours were tight to the storm and storm motion was rather slow, but the lead time on lightning detection was around 30-40 minutes. With an advecting storm, I would have expected this to be rather accurate to the 60 minute threshold that it attempts to achieve, but 30-40 minutes is still VERY useful for DSS and now-casting purposes.

NUCAPS

NUCAPS had some interesting results today, primarily in the way it reported green, yellow, and red data points. Some of the gridded data was unavailable for points with green-retrieval and this was puzzling because it would have indicated a dry slot over the DFW region that was evident in the water vapor and visible satellite. However, the data grid boxes were missing or contaminated with bad data over a mostly clear area. Areas with similar cloud coverage performed as expected. The pop-up skew-t continues to be the best tool in this suite of products, provided the data points are green-retrieval.

Optical Flow Winds

Not much use on the optical flow winds today due to the fact that ongoing convection muddied the data. Overshooting tops were visible for a brief moment, but quickly engulfed in strong storms and expanding anvils. The divergence field is really hard to gather meaningful intel from and the existing platform outside of AWIPS limits its overall usage. A suggestion in our group today was that divergence could be useful if the noise is limited. Perhaps remove values above and below a certain threshold. Instead of widespread values, draw attention to the important outliers.
– Overcast Ambience

Today’s details of products and warnings: Midland, TX

I found the PHS products useful for seeing the corridors of enhanced severe risk. They correctly showed that hail (or wind) was the highest risk compared to tornadoes.

ProbSevere was very useful with the trend lines. Again and again correctly identified risks as they occurred.

GLM showed strong ramp ups in activity prior to each severe issuance. No complaints here.

NUCAPS data was less useful, but with the skew-t pop up I was able to correctly see areas of mid level dry air. I did not use optical flow. Prob lightning was useful to see the first cells pop up but did not serve as much purpose after that with no known DSS opportunities.

Some Random Guy

Tall cell in western GGW’s area

Strong updraft in western GGW showed the red colors going over to greens…likely the updraft getting into the warmer stratosphere.

Day cloud phase distinction loop over the area shows a continued strong updraft with gravity waves radiating outward.

Quite a bit of flashes in that cell in GGW.

Charley

Stronger Core

Continuing the SVR downstream, as yet another strong core pops up.  Colder cloud on IR and now prob severe is starting to jump up.  Blue color showing ProbHail and ProbWind in the 30s.

Cell also showing more signs of organization in the SRM…better chances for hail.

Also getting a pickup from the DMD (latency issue still for NMDA).

Charley

Potential Color Scale Change for GLM Products

An adjustment in the color scales for the GLM Avg Flash Area  and Minimum Flash Area to something of blue in the “cool” end to bright red in the “hot” end, signifying active and new convection, might help forecasters better interpret the data quicker.

Pocatello Storms

We’re currently monitoring conditions in eastern Idaho. Right now I’m using various applications to analyze and initialize current conditions. Currently AllSky is showing cape around 1000kj, and PWATS around .80 inches.

That PWAT value on the morning sounding just west of the area was close to .64″. Seeing how moisture levels are lower to west I can interpolate that the moisture values are similar to what’s show on allsky. The allsky 900-700mb also seems to pick up on the relatively moist area in the lower half of the atmosphere.

Looking downstream we’re noticing a line of developing convection using the Day land cloud RGB. It’s helpful to analyze just how high the tops of the storms are getting combined with cloud tops.

Zooming in closer I can examine the few storms that have popped up more closely. The RBG help the differentiate between the ambient cirrus clouds from the growing storms. That might not have been as easy to see using a typical visible view.

The AFA and Minimum flash area maximums are hinting at growing convection just downwind.  That growth leads to me to anticipate further intensification as these storms move into a more favorable environment in eastern Idaho.

As storms begin to intensify probsever eis picking up on the strongest activity. Probsevere began to ramp up for the cell just south pf Pocatella. That combined with traditional radar methods lead me to issues a warning for that cell.

A similar situation unfolded with a south just south of CWA that I debated on warning. The probsevere values did show and uptick. Eventually the storm fell apart as it pushed into southern Idaho.

We’re watching a few cells in the southern half of the viewing area.  As NUCAPS comes in I’m comparing it the allsky cape. The allsky cape is around 1100kj.

The modified sounding is putting out about 700kj of ml cape. While the nonmodified is much lower down to 500kj.

We don’t have a midday sounding to see which one is initializing the best. For what it’s worth. The rap cape output is around 500kj.

The TPW was close to the observed pwats as well. It was outputting about .65″.

The FED has been fairly low this afternoon which isn’t typical for what I have been usually see. However, the AFA and the MFA are higher indicative of growing updrafts. I’m thinking the FED might be lower because of potential hail in the updraft.

The cell pushing out of Freemont county Idaho continues to intensify as it pushed into Montana. Both the MD, and NMDA were picking up on a high meso that was clearly seen on SRM.

 

The CPTI was showing high probabilities as well.  I still wasn’t as concerned about a tornado threat due to how high the base of the storm was. It was interesting to see though.

The forecast cape and cin values came in from the NUCAPS,  but it wasn’t usable for my area because their was a lot of missing data.

The actual Pocatella office issued a warning for Freemont county. Using typical radar methods the storm didn’t look like it warranted a severe thunderstorm warning, but satellite and MFA showed new convection was still firing up. Right after looking at satellite there was a report of a 54mph wind gusts.

 

Lightning over the Mountains

Having the different lightning products from GLM as well as data from ENTLN allows you to pick out which cells have started producing lightning.  One flash up in northern WY on this image, the dot in the upper left, did show up in the FED data a couple minutes later.

Charley

Western Wyoming Cell Developing

IR imagery showing a taller/colder cell in western Wyoming.  KRIW radar just switched from VCP 35 to 12.  Peak Z aloft now only around 30.  Lightning data, below, shows relatively low FED, but higher TOE, with peak values in the 300’s, similar to some of the storms we saw yesterday.

One other thing to note in these, is the relatively low FED and number of ENTLN/NLDN flashes.  That doesn’t mesh with the brightness of the TOE.

Charley