NSSL stages equipment near Hurricane Harvey

NSSL Researcher Sean Waugh with the mobile mesonet. (Photo provided)

NOAA National Severe Storms Laboratory Researcher Sean Waugh will collect weather data in the path of Hurricane Harvey Friday to record how the landfalling hurricane changes as it develops.

The first major hurricane forecast to make landfall in the Gulf Coast in 12 years provides an opportunity to study its development and any potential development of tornadoes.

“While tornadoes are relatively rare in environments associated with landfalling hurricanes, if they occur they can have large impacts,” Waugh said.

Waugh will use a truck with roof mounted instruments called a mobile mesonet to record observations of Hurricane Harvey for an extended period of time. The instruments and weather balloons will record rain, wind and temperature. He will work with scientists from The University of Oklahoma College of Atmospheric and Geographic Sciences. The team is utilizing the university’s Cooperative Institute for Mesoscale Meteorological Studies SMART radar truck.

Researchers will monitor how the hurricane’s structure changes during landfall as well as temperature changes and wind on the surface. Scientists will test a  new instrument developed at NSSL that measures rain size and distribution to help with flood forecasts. Information gathered will be shared with National Weather Service forecasters.

NOAA NSSL and partners are studying the development of tornadoes in the Southeast U.S. in order to improve their prediction through  VORTEX-Southeast.

For more information about Hurricane Harvey and the current forecast: http://www.nhc.noaa.gov/#harvey.

Share this:

Project utilizes radar technology for flood warnings

A new research project is already helping save lives and property with early flood notification after a stream in southern Oklahoma rose 10 feet in one hour.

Jonathan J Gourley, research hydrologist with the NOAA National Severe Storms Laboratory, said the project will demonstrate the use of remote-sensing technology for better flood detection and improve downstream predictions by models. Researchers will deploy 14 stream radars throughout the United States that utilize remote sensing to measure the speed, depth, and flow rates in streams.

The stream radar device elevated above the water in Mill Creek, Oklahoma.

NSSL is leading several remote sensing in streams projects, known as Automated NonContact Hydrologic Observations in Rivers, or ANCHOR, with funding from NOAA’s Joint Technology Transfer Initiative. This part of the project is with The University of Oklahoma Cooperative Institute for Mesoscale Meteorological Studies and the project principal investigator Danny Wasielewski, an electronics engineer with OU CIMMS.

Walking through patches of poison ivy and trudging through deep mud, the research team installed the project’s second radar above a creek near Mill Creek, Oklahoma, in late July. It will monitor the stream’s water speed and depth, along with how quickly the water may rise during a hazardous weather event, and notify researchers and local stakeholders of the observed changes.

The first stream radar was deployed in April in Falls Creek near Davis, Oklahoma, and near Falls Creek camp, an area that has more than 55,000 visitors participating in youth camps and conferences each summer. As many as 7,500 campers may be downstream at any moment.

Within a few weeks, the Falls Creek installation provided useful data to the ANCHOR team.

The radar was in place taking measurements as the water transformed from a trickling stream to a raging river on May 19. Gourley received a notification indicating flash flood conditions, triggered by a sudden increase in the stream’s water flow. He cross-checked the project information with NSSL’s Flash Flood Forecast System and concluded flash flood conditions were occurring.

Based on this information, he notified Falls Creek officials, advising them to take precautions. One hour after the notification the river rose 10 feet. Fortunately, no visitors were at camp that week.

“The sensor provided real time information and text alerts were issued indicating an impending threat,” he said.

The event itself was rare, and measuring it was even more unprecedented.

“Capturing an event of this magnitude just a matter of weeks after we installed the instrument is very rare, equivalent to finding a needle in a haystack,” Gourley said.  

The increase in velocity indicated by the radar was a major insight in itself. The stream’s velocity increased an hour before the depth began to rise, providing additional time to respond to an impending flash flood.

“When we later went out, we saw the radar was damaged from debris flowing down river during the event created by a loss of soil composition,” Gourley said. “A tree fell on top of one radar cable and tore it from the mount, but it continued to operate.”

Deploying radars to measure water height, in combination with text alerts and notifications may impact water resource management practices and help save more lives from the number one severe weather killer – flooding.

The system being demonstrated for operational use during the two-year JTTI-funded project may offer a more cost-effective and accurate solution for estimating streamflow and flooding conditions than what is currently being used in the United States. Gourley said conventional gauging can be costly and the amount of conventional gauges used is generally going down because of the time and resources required.

ANCHOR’s team continues scouting for new radar installment locations. Installations will take place through 2017 with results expected in early- to mid-2018.

 

OU CIMMS Research Scientists Jorge Duarte Garcia and Danny Wasielewski install an anchor into a tree. The anchor ensures the radar device stays hoisted above the stream.
OU CIMMS Research Scientist Danny Wasielewski (right) adjusts the radar’s position while Jonathan J Gourley communicates the position of the radar. (Photos by James Murnan/NOAA NSSL)
Share this:

Researchers evaluating lightning data in Hazardous Weather Testbed

For the first time ever, lightning data from a weather satellite is available and being evaluated in the NOAA Hazardous Weather Testbed.

Forecasters, researchers, product developers and broadcast journalists are analyzing recently available experimental data from an instrument on GOES-16, the newly launched NOAA satellite as part of the HWT Experimental Warning Program.

GOES-16, launched by NASA last November, scans the skies five times faster than NOAA’s current geostationary weather satellites and provides images at four times greater resolution.

The higher resolution allows forecasters to see more details in storm systems, particularly during periods of rapid strengthening or weakening. GOES-16 is also the first to carry a lightning detector in geostationary orbit.

The Geostationary Lightning Mapper observes total lightning, meaning in-cloud and cloud-to-ground lightning. GLM can help increase the accuracy of forecasts and warning times when combined with other forecaster tools.

The HWT EWP GOES-16 experiment just wrapped up its second of four weeks. Kristin Calhoun, CIMMS research scientist working at NSSL, said this is the first time forecasters have seen GLM data from GOES-16.

“We are here to test it and to contribute anything from ideas for data integration to training needs,” Calhoun said. “We want people to identify as many training gaps as possible.”

Bill Line, a meteorologist with the NOAA National Weather Service Pueblo forecast office, said if people like him learn to use GLM’s data, it will better his forecasts.

“These are new tools and we want to make sure forecasters are ready to use them,” he said. “There are many combinations of data and probabilities they haven’t looked at before.”

David Stark, a meteorologist with the NOAA National Weather Service New York forecast office, in the Hazardous Weather Testbed working with GLM data. (Photo by James Murnan/NOAA)

That is the purpose of the HWT – the facility allows end users to test new, experimental products before they are released to the NWS or other NOAA entities and partners.

“We’ve held similar experiments in the past but with proxy data,” Calhoun said. “This is the first year we are able to use real data. Ideally we will continue experiments like this, using real GOES-16 data, for years to come.”

David Stark, a meteorologist with the NWS New York forecast office, participated in the first week’s experiment. He described the experience as outstanding.

“Testing out some new products and helping fine tune them so they just aren’t thrown into the NWS is great,” he said. “To be able to see these tools and see the new research, while acting like I’m issuing warnings in an area gives me a good idea and feel of what I could be doing with this in real life and how it would enhance our current products.”

Stark said the product helps better show storm formations, providing the forecaster with a better idea of when and where a storm may form.

“This would add more confidence to my forecasts and allow me to focus more on increasing warning on possible life-threatening storms,” Stark said.

The GOES-16 experiment continues in the NOAA Hazardous Weather Testbed through July 21.

Share this:

FLOCAST: Flood Observations – Citizens As Scientists using Technology project

mPING mPING floodNSSL, CIMMS and University of Oklahoma researchers have launched a new project to collect public observations of flooding that will help improve flash-flood prediction and warning tools in the US.

The Flood Observations – Citizens As Scientists using Technology project (FLOCAST) will first use crowdsourced data about flooding and its severity collected through the already successful mPING (meteorological Phenomena Identification Near the Ground) app available on smart phones. Crowdsourced reports have the potential to provide a large and independent database flood events at fine spatial resolution.

The FLOCAST team will then target the local emergency management community, who tend to provide the most accurate and detailed reports of flooding, and ask them to respond to a 5-minute web-based questionnaire. As time permits, participants will provide details of the timing and location of flash flooding impacts in their areas of responsibility shortly following the event. They will also be able to submit a photo documenting the flooding event.

This same group of expert witnesses will be asked to identify victims, those directly impacted by the flooding, to volunteer their participation in a telephone interview. Researchers will use the information to better understand how society perceives, behaves and responds during flash-flood events, and improve the design, utility, and communication of information about impending flash floods to reduce loss of life.

 

Share this:

NSSL scientists heading to Florida to launch balloons into thunderstorms

Photo by Mike Coniglio
Photo by Mike Coniglio

NSSL scientists will launch instrumented balloons into north Florida thunderstorms as part of an ongoing University of Florida triggered lightning experiment for two weeks beginning July 28. The team hopes to characterize the microphysics and electrical structure of storms in which lightning is triggered and learn more about how lightning works.

NSSL will launch two balloons at a time. One balloon will carry a high-definition video particle imager and a Parsivel disdrometer to measure the number, size, and shape of liquid and frozen water particles, and the other will carry an electric field meter.  Both will be tracked by GPS radiosondes which will also measure temperature, pressure, dewpoint and winds.

The University of Oklahoma’s Shared Mobile Atmospheric Research and Teaching Radars (SMART-R) will be making polarimetric observations of the storms. NSSL’s data will be used to help interpret the SMART-R’s polarimetric observations.

Researchers at the University of Florida in Gainesville have had an extensive long-standing program to launch wire-trailing rockets into storm clouds to trigger and study lightning initiation, lightning strikes, and radiation from lightning. This new effort will improve our understanding of lightning produced by thunderstorms, and provide an opportunity to study storms with more tropical characteristics than those observed in the southern Plains.

NSSL’s participation is part of a cooperative agreement with the Defense Advanced Research Projects Agency (DARPA) that sponsors the University of Florida triggered lightning experiment near Gainesville, Fla.

Share this:

CI-FLOW total water level system prepared for test by Tropical Storm Andrea

Tropical Storm Andrea on Thursday, June 6, 2013.
Tropical Storm Andrea on Thursday, June 6, 2013.

Researchers with the Coastal and Inland Flooding Observation and Warning (CI-FLOW) project are preparing for Tropical Storm Andrea to test their total water level system on Friday in North Carolina. The CI-FLOW system captures the complex interaction between rainfall, river flows, waves, tides and storm surge, and how they impact water levels in the Tar-Pamlico and Neuse Rivers and the Pamlico Sound in North Carolina.

CI-FLOW collects data from a computing system that combines radar and rain gauge information to create estimates of rainfall.  This information is passed on to water quantity models that simulate freshwater flows from the headwaters of the basins into the rivers; taking into account soil type, slope of the land and vegetation patterns.  Finally, water flow data is passed from river models to a coastal circulation and storm surge model that provides simulations of waves, tides and storm surge.

National Weather Service forecasters will have access to CI-FLOW during Tropical Storm Andrea to help them evaluate the system for application in the flood and flash flood warning process.

The CI-FLOW project is motivated by NOAA’s critical forecast need for detailed water level predictions in coastal areas and has a vision to transition CI-FLOW research findings and technologies to other U.S. coastal watersheds.

The NOAA National Severe Storms Laboratory with support from the NOAA National Sea Grant Office collaborates with the unique interdisciplinary team including the North Carolina, South Carolina, and Texas Sea Grant Programs, University of Oklahoma, Renaissance Computing Institute (RENCI), University of North Carolina at Chapel Hill, Seahorse Consulting, NWS Forecast Offices in Raleigh, and Newport/Morehead City, NWS Southeast River Forecast Center, NOAA’s Coastal Services Center, NOAA in the Carolinas, NOAA Southeast and Caribbean Regional Team (SECART), NOAA-Integrated Ocean Observing System, Department of Homeland Security, Center of Excellence-Natural Disasters, Coastal Infrastructure and Emergency Management, Centers for Ocean Sciences Education Excellence SouthEast, Coast Survey Development Laboratory and NWS Office of Hydrologic Development.

Share this:
Tags: None

May 2013 Oklahoma tornado experimental warning products

The Hazardous Weather Testbed Spring Warning Experiment was operating May 20, 2013. Participants used the NSSL On Demand rotation tracks, the experimental Tornado Debris Signature algorithm, and GOES-R Proving Ground products during experimental warning operations.

The experimental Tornado Debris Signature algorithm output.
The experimental Tornado Debris Signature algorithm output that uses dual-pol radar data.
Rotation tracks product with EF-0 damage outline overlayed.
Rotation tracks product with EF-0 damage outline overlayed.
Share this:

Record low estimated tornado counts from May 2012 to April 2013

Tornado in Wyoming
Tornado in Wyoming

NSSL tornado climatology expert, Harold Brooks has written a blog post about the remarkable absence of tornado activity during the 12-month period from May 2012 to April 2013. The estimated number of EF-1 or stronger tornadoes for this period is 197, a record low.

Brooks compared the current 12-month period with previous (E)F1 or stronger tornado counts back through 1954. He found the previous low for (E)F1 and stronger tornadoes in a 12 consecutive calendar month period was 247, from June 1991-May 1992.

This apparent record was set less than two years after the record for most EF1+ tornadoes in a 12-month period was set, with 1050 from June 2010-May 2011.

Read the full post here:  U.S. Severe Weather Blog.

Share this:

Warn-on-Forecast Week!

Researchers and forecasters talk Warn-on-Forecast
Researchers and forecasters talk Warn-on-Forecast

The NOAA NSSL hosted the Technical Workshop on Numerical Guidance Support Warn-on-Forecast on Tuesday February 5.

The fourth annual Warn on Forecast and High Impact Weather Workshop followed on February 6-7.

Warn-on-Forecast http://www.nssl.noaa.gov/projects/wof/collaborators include NSSL and Earth System Research Laboratory, NOAA National Weather Service and Storm Prediction Center, The University of Oklahoma’s Center for the Analysis and Prediction of Storms, and Social Science Woven Into Meteorology.

These workshops give researchers an opportunity to present progress reports and to discuss plans for further research toward improvements in lead time for severe weather warnings.

Share this:

CI-FLOW total water level system prepared for test by Hurricane Sandy

Researchers with the Coastal and Inland Flooding Observation and Warning (CI-FLOW) project are preparing for Hurricane Sandy to test their total water level system in North Carolina this weekend. The CI-FLOW system captures the complex interaction between rainfall, river flows, waves, tides and storm surge, and how they impact water levels in the Tar-Pamlico and Neuse Rivers and the Pamlico Sound in North Carolina.

CI-FLOW collects data from a computing system that combines radar and rain gauge information to create estimates of rainfall.  This information is passed on to water quantity models that simulate freshwater flows from the headwaters of the basins into the rivers; taking into account soil type, slope of the land and vegetation patterns.  Finally, water flow data is passed from river models to a coastal circulation and storm surge model that provides simulations of waves, tides and storm surge.

National Weather Service forecasters will have access to CI-FLOW during Hurricane Sandy to help them evaluate the system for application in the flood and flash flood warning process.

The CI-FLOW project is motivated by NOAA’s critical forecast need for detailed water level predictions in coastal areas and has a vision to transition CI-FLOW research findings and technologies to other U.S. coastal watersheds.

The NOAA National Severe Storms Laboratory with support from the NOAA National Sea Grant Office leads the unique interdisciplinary team including the North Carolina, South Carolina, and Texas Sea Grant Programs, University of Oklahoma, Renaissance Computing Institute (RENCI), University of North Carolina at Chapel Hill, Seahorse Consulting, NWS Forecast Offices in Raleigh, and Newport/Morehead City, NWS Southeast River Forecast Center, NOAA’s Coastal Services Center, NOAA in the Carolinas, NOAA Southeast and Caribbean Regional Team (SECART), NOAA-Integrated Ocean Observing System, Department of Homeland Security, Center of Excellence-Natural Disasters, Coastal Infrastructure and Emergency Management, Centers for Ocean Sciences Education Excellence SouthEast, Coast Survey Development Laboratory and NWS Office of Hydrologic Development.

Share this: