Hurricane Harvey offers unprecedented data for NSSL researcher

As Hurricane Harvey came ashore along the Texas coast, NOAA National Severe Storms Laboratory Researcher Sean Waugh managed to do what no one has done before — he launched a weather balloon in the eye of the hurricane. The data recorded by the balloon’s instruments as it circled Harvey’s eyewall were record-breaking and confusing, and will require time and research to explain.

“This was the first observation of its kind,” Waugh said. “No one has ever seen this type of data, some of the values are exceptionally high and we are still trying to determine what those values mean.”

An image of the observations NOAA NSSL Researcher Sean Waugh saw after launching a weather balloon in the eye of the hurricane. (Photo by Sean Waugh/NOAA NSSL)

The eyewall is the edge of the eye of the hurricane — the strongest area of the storm. Two measurements from the balloon launch were particularly interesting. The first was a wind profile that produced computed values higher than ever observed, indicating its use in these circumstances may not be correct. The second, a measurement of potential rain, was also extreme, and may have been an early indication of the unprecedented flooding produced by Harvey.

The NOAA NSSL mobile mesonet in Texas before Hurricane Harvey came ashore. (Photo by Sean Waugh/NOAA NSSL)

The balloon launch was one part of Waugh’s efforts to collect data in the path of Hurricane Harvey. From a truck with roof mounted instruments called a mobile mesonet, he recorded observations of rain, wind, temperature and humidity for an extended period of time.

Gathering the data was not a task for the faint of heart. Before and after the balloon launch, Waugh experienced high winds — nearly 100 miles per hour — while sitting in the heavy mobile mesonet truck.

Waugh coordinated on this project with scientists from The University of Oklahoma College of Atmospheric and Geographic Sciences. The university team collected data with their radar-equipped truck.

Over time, Waugh hopes to better understand this unprecedented data set, and how it can contribute to a greater understanding of hurricanes and the tornadoes they produce.

Share this:

NSSL researchers measure eclipse effects

NOAA National Severe Storms Laboratory research scientist Sean Waugh uses an instrumented truck to measure the atmosphere while he prepares a weather balloon for launch earlier this year in Kansas. He will do the same thing on Aug. 21 in Nebraska during the total solar eclipse.
(Photo by Matthew Mahalik/OU CIMMS and NOAA NSSL)

The total solar eclipse on Aug. 21 offers a unique opportunity for researchers from the NOAA National Severe Storms Laboratory, University of Nebraska-Lincoln and Oklahoma State University to study sudden, drastic changes in the Earth’s lower atmosphere caused by a loss of sunlight.

“This is a rare circumstance,” said Sean Waugh, research meteorologist with NSSL. “We don’t know what sort of effects on temperature and winds an eclipse might have.”

Waugh will drive to a location in southern Nebraska and park in the path of totality. From the start of the eclipse through its completion, weather instruments mounted to the roof of the NSSL truck will automatically measure surface temperature, relative humidity, wind speed and direction, pressure and solar radiation every second.

Next to the truck about every 30 minutes, Waugh will launch weather balloons with instruments attached to take the same atmospheric measurements in a vertical profile through the lower part of the atmosphere. These weather balloons are used by the National Weather Service daily, and can reach altitudes up to about 80,000 feet.

At the same time, Adam Houston, associate professor at the University of Nebraska-Lincoln, and collaborators from Oklahoma State University in Stillwater, Oklahoma, will fly two Unmanned Aerial Systems. The UNL Matrice, operated by University of Nebraska-Lincoln, will measure temperature, moisture and pressure. The DJI Matric 600 operated by Oklahoma State University will measure wind speed and direction, along with temperature, moisture and pressure.

The UNL Matrice, operated by University of Nebraska-Lincoln, will measure temperature, moisture and pressure. The DJI Matric 600 operated by Oklahoma State University will measure the same things as well as wind speed and direction. (Photo provided)

“It will be good to combine different platforms and take the same observations in different ways,” Waugh said. “These measurements will increase our understanding of what an eclipse will do and what sort of effects it can have on our surface weather conditions.”

In addition to documenting the surface temperature and wind changes caused by the eclipse, the data will be used later to validate predictions from and refine an experimental version of the High Resolution Rapid Refresh short-term weather model run by the NOAA Earth Systems Research Laboratory’s Global Systems Division in Boulder, Colorado.

Share this:

Eye to eye with Irene

MM Hurricane Irene
NSSL's Mobile Mesonet is prepared to take weather measurements of Hurricane Irene as it makes landfall.

NOAA and University of Oklahoma researchers are in North Carolina to deploy two mobile radars and a state-of-the-art instrumented vehicle to intercept Hurricane Irene. They are joining research teams from across the United States to collect an unprecedented hurricane dataset to better understand these devastating storms and protect lives and property. The team includes researchers from the NOAA National Severe Storms Laboratory, the University of  Oklahoma (OU), and the NOAA Cooperative Institute for Mesoscale Meteorological Studies at OU.

Hurricanes are notorious producers of torrential rain. This combined with fierce winds, driving water and waves onshore, can cause devastating flooding even many miles inland.

Scientists will use the unique dataset from this storm to help improve techniques for estimating rainfall in extreme weather events, which will increase the accuracy of flood and flash flood forecasts and warnings. Researchers also want to understand severe turbulence and wind bursts in the hurricane near the ground to help set building code guidelines in hurricane prone areas.

Both mobile radars from the University of Oklahoma are equipped with dual-polarization technology that provides more accurate estimates of precipitation type and amount. This will be the first hurricane for the National Science Foundation-funded Rapid Scan X-band dual polarized radar (RaXPOL), which is sensitive enough to detect cloud particles. The storm intercept Shared Mobile Atmospheric Research and Teaching radar (SMART-R 2) uses a different frequency and detects precipitation.

Data from one of the mobile radars will be available online for public real-time viewing while it is gathering data:

Researchers plan to compare mobile radar data with the NOAA National Weather Service NEXRAD radar in Newport/Morehead City, N.C., recently upgraded with dual-polarization technology. It will be the first time three radars transmitting at three different frequencies will be operating simultaneously to scan a land-falling hurricane. Since each radar reveals different features of the storm, researchers will be looking for new clues in the rainfall characteristics of hurricanes.

In addition, a number of new weather instruments fixed to a vehicle will be tested during the deployment. Other teams will deploy a variety of sensitive weather instruments to measure clouds, size and speed of raindrops, infrared radiation, static electricity, turbulence, and wave surges.

For their own safety, the NOAA/University of Oklahoma team will choose a site designed to withstand Category-5 hurricane storm surge and will anchor their vehicles.

A SMART-R radar intercepted Tropical Storm Gabrielle in 2001, Hurricane Lilli in 2002, Hurricane Isabel in 2003 and Hurricane Frances in 2005. A mobile radar was also deployed during Hurricane Ike in 2008 and made the first dual-polarized scans of a hurricane eyewall.

Share this: