Anatomy of a Well Forecast Bow Echo, Part II

A Cautionary Note about Deterministic Guidance from High-Resolution NWP Models (posted by GregC on behalf of David Bright).

image not found
Figure 1. 13-hour WRF-NMM forecast of simulated reflectively (1 KM AGL) valid at 1300 UTC 8 May 2009 (left), and verifying observed base reflectively and severe thunderstorm warning polygons valid at 1300 UTC 8 May 2009 (right). [Image not found]

The 13-hour WRF-NMM forecast of the Missouri Bow Echo (see earlier post with this title) is remarkable in both its accuracy and structure, particularly given the severity of the event. As model forecasts go, it appears to be a perfect piece of numerical guidance. But shifting the grid about 450 miles to the east, the exact same 13-hour WRF-NMM completely missed the MCS (albeit less severe) moving through eastern Tennessee. So while there is little doubt that the model provided an essentially perfect prediction of the intense bow echo over southern Missouri, in a purely deterministic sense, the same model provided little-to-no short-term convective guidance with respect to convective mode and QPF over much of Tennessee.

The information provided by these high-resolution NWP models is revolutionary, and will likely lead to a quantum increase in high-impact services provided by the NWS. But let’s be careful not to oversell the capabilities of a single, deterministic model forecast. In order to fully realize the potential of future NWS forecasting and warning services, an ensemble of convective-resolving models will be required to address the uncertainty that accompanies all weather forecasts. The HWT has evaluated convective-resolving models over a large portion of the CONUS for the past several years, and it is encouraging to see the improvements these models have made in high-impact convective guidance and in their ability to predict intense, realistic convective structures such as the bow echo over southern Missouri. But a single high-resolution NWP forecast, regardless of its ability to reproduce intense convective structures, is unlikely to meet the future uncertainty requirements of the entire NWS at all times and locations. That said, the development and evaluation of these convection resolving models is and will continue to be an essential part of future high-impact, life saving, decision support services provided by the NWS, likely realized through a blend of deterministic guidance, well constructed ensemble systems, and related ensemble interrogation tools.

Tags: None

One thought on “Anatomy of a Well Forecast Bow Echo, Part II

  1. Good point, David. It’s a thrill for some of us to see a “perfect” forecast of a particular phenomenon, but deterministic forecasts like this are clearly the exception rather than the rule. And we don’t know in advance how much confidence to have in a particular solution. Likewise, ensembles (for example, the SREF) seem to be very good at sampling the pdf of uncertainty on some days, but also have days when they seem to be on a trajectory quite different from reality. I agree completely that we should be using a combination of deterministic and ensemble guidance products. But we still a lot of room for improvement in both – and room for other tools that have not yet been developed.

Comments are closed.