Jeremy Gibbs
Data Assimilation & Modeling Team (DAMT)
Job Title:Research Scientist
Affiliation:Federal
Email:Email hidden; Javascript is required.
Phone:(405) 325-3792
Jeremy uses theory and computers to study atmospheric boundary-layer flows, including turbulence modeling, land-surface modeling, parameterization of boundary-layer and surface-layer interactions, and multi-scale numerical weather prediction. He is currently working on projects to improve atmospheric models in the areas of scale-aware boundary-layer physics, heterogeneous boundary and surface layers, fire weather, tornado dynamics, and other storm-scale phenomena.
Education
Degree (Ph.D, M.S, B.A, etc.) | Major Subject | University or College Name | Year (YYYY) (optional) |
---|---|---|---|
Ph.D. | Meteorology | University of Oklahoma | 2012 |
M.S. | Meteorology | University of Oklahoma | 2008 |
B.S. | Meteorology | University of Oklahoma | 2006 |
Research Interests
- atmospheric boundary layer
- turbulence
- computational fluid dynamics
- numerical methods
- numerical weather prediction
Professional Activities
- NSSL Representative, OAR EEO Advisory Committee
- Member, NCAR CISL High-Performance Computing Allocations Panel
- Member, NCAR Common Community Physics Package (CCPP) code management committee
- Member, NCAR High-Performance Computing User Group
- Co-Leader, Boundary Layer Integrated Sensing and Simulation (BLISS) group
Outreach/Volunteer
- Co-Chair, NSSL Outreach Committee and ex officio NDIST participant
Honors & Awards
Award Name | Year |
---|---|
NOAA Research EEO Diversity Award for Exemplary Service | 2022 |
School of Meteorology Douglas Lilly Award for best peer-reviewed publication | 2012 |
School of Meteorology Outstanding Teaching Assistant Award | 2009 |
Selected Publications
- 2023: A method for generating a quasi-linear convective system suitable for observing system simulation experiments. Geoscientific Model Development, 16, 6, 1779–1799, doi:10.5194/gmd-16-1779-2023 , , L. J. Wicker,
- 2023: Inclination Angles of Turbulent Structures in Stably Stratified Boundary Layers. Boundary-Layer Meteorology, 186, 27–41, doi:10.1007/s10546-0 , , ,
- 2022: QES-Fire: a dynamically coupled fast-response wildfire model. International Journal of Wildland Fire, 31, 3, 306–325, doi:10.1071/WF21057 , , , , , , , ,
- 2021: Utilizing dynamic parallelism in CUDA to accelerate a 3D red-black successive over relaxation wind-field solver. Environmental Modelling & Software, 137, 104958, doi:10.1016/j.envsoft.2021.104958 , , , , , ,
- 2020: Large-Eddy Simulation of the Atmospheric Boundary Layer. Boundary-Layer Meteorol, 177, 541–581, doi:10.1007/s10546-020-00556-3 , , , , ,
- 2020: On the evaluation of the proportionality coefficient between the turbulence temperature spectrum and structure parameter. Journal of the Atmospheric Sciences, 77, 2761–2763, doi:10.1175/JAS-D-19-0344.1 , ,
- 2020: Structure Functions and Structure Parameters of Velocity Fluctuations in Numerically Simulated Atmospheric Convective Boundary Layer Flows. Journal of the Atmospheric Sciences, 77, 3619–3630, doi:10.1175/JAS-D-20-0038.1 , ,
- Potvin, C. K., P. S. Skinner, K. A. Hoogewind, M. C. Coniglio, 2020: Assessing Systematic Impacts of PBL Schemes on Storm Evolution in the NOAA Warn-on-Forecast System. Monthly Weather Review, 148, 2567–2590, doi:10.1175/MWR-D-19-0389.1 , A. J. Clark, M. L. Flora, A. E. Reinhart, , E. N. Smith,
- 2020: Current and Future Uses of UAS for Improved Forecasts/Warnings and Scientific Studies. Bulletin of the American Meteorological Society, 101, E1322–E1328, doi:10.1175/BAMS-D-20-0015.1 , E. Smith, , , , , S. Waugh, N. Yussouf, , , , , , , , , , , , , , , , , , M. Wagner, , ,
- Smith, E. N., J. G. Gebauer, P. M. Klein, E. Fedorovich, and 10.1175/MWR-D-18-0293.1. , 2019: The Great Plains Low-Level Jet during PECAN: Observed and Simulated Characteristics. Mon. Wea. Rev., 147, 1845–1869, doi:
- Smith, E. N., doi.org/10.1175/JAMC-D-17-0361.1. , E. Fedorovich, and P. M. Klein, 2018: WRF Model Study of the Great Plains Low-Level Jet: Effects of Grid Spacing and Boundary Layer Parameterization. J. Appl. Meteor. Climatol., 57, 2375–2397, doi:
- van Heerwaarden, C. C., van Stratum, B. J. H., Heus, T., 10.5194/gmd-10-3145-2017 , Fedorovich, E., and Mellado, J. P., 2017: MicroHH 1.0: a computational fluid dynamics code for direct numerical simulation and large-eddy simulation of atmospheric boundary layer flows, Geosci. Model Dev., 10, 3145–3165, doi:
- Fedorovich, E., 10.1175/JAS-D-17-0013.1 , and A. Shapiro, 2017: Numerical Study of Nocturnal Low-Level Jets over Gently Sloping Terrain. J. Atmos. Sci., 74, 2813–2834, doi:
- 10.1002/qj.2818 and Fedorovich, E., 2016: Sensitivity of turbulence statistics in the lower portion of a numerically simulated stable boundary layer to parameters of the Deardorff subgrid turbulence model. Q.J.R. Meteorol. Soc., 142: 2205-2213, doi:
- 10.1175/MWR-D-15-0390.1 , E. Fedorovich, B. Maronga, C. Wainwright, and M. Dröse, 2016: Comparison of Direct and Spectral Methods for Evaluation of the Temperature Structure Parameter in Numerically Simulated Convective Boundary Layer Flows. Mon. Wea. Rev., 144, 2205–2214, doi:
- Bonin, T.A., Goines, D.C., Scott, A.K., C. Wainwright, 10.1007/s10546-015-0009-9 , and P.B. Chilson, 2015: Measurements of the Temperature Structure-Function Parameters with a Small Unmanned Aerial System Compared with a Sodar. Boundary-Layer Meteorol 155, 417–434, doi:
- Shapiro, A., Fedorovich, E., and 10.5194/gmd-8-1809-2015 : An analytical verification test for numerically simulated convective flow above a thermally heterogeneous surface, Geosci. Model Dev., 8, 1809–1819, doi:
- Wainwright, C.E., Bonin, T.A., Chilson, P.B., 10.1007/s10546-014-0001-9 , E. Fedorovich, and R.D. Palmer, 2015: Methods for Evaluating the Temperature Structure-Function Parameter Using Unmanned Aerial Systems and Large-Eddy Simulation. Boundary-Layer Meteorol. 155, 189–208, doi:
- 10.1007/s10546-014-9970-y , Fedorovich, E. & Shapiro, A., 2015: Revisiting Surface Heat-Flux and Temperature Boundary Conditions in Models of Stably Stratified Boundary-Layer Flows. Boundary-Layer Meteorol. 154, 171–187, doi:
- and E. Fedorovich, 2014: Effects of Temporal Discretization on Turbulence Statistics and Spectra in Numerically Simulated Convective Boundary Layers. Boundary-Layer Meteorol. 153, 19–41, https://doi.org/10.1007/s10546-014-9936-0
- Wainwright, C. E., P. M. Stepanian, P. B. Chilson, R. D. Palmer, E. Fedorovich, and 10.1175/JTECH-D-13-00161.1 , 2014: A Time Series Sodar Simulator Based on Large-Eddy Simulation. J. Atmos. Oceanic Technol., 31, 876–889, doi:
- 10.1175/JAMC-D-13-033.1 and E. Fedorovich, 2014: Comparison of Convective Boundary Layer Velocity Spectra Retrieved from Large- Eddy-Simulation and Weather Research and Forecasting Model Data. J. Appl. Meteor. Climatol., 53, 377–394, doi:
- 10.1175/2011JAMC2661.1 , E. Fedorovich, and A. M. J. van Eijk, 2011: Evaluating Weather Research and Forecasting (WRF) Model Predictions of Turbulent Flow Parameters in a Dry Convective Boundary Layer. J. Appl. Meteor. Climatol., 50, 2429–2444, doi: