OCTANE Speed Assignments in Montana

An area of thunderstorms over southern Montana was examined using OCTANE and other satellite imagery.

Of interest in particular is the storm over western Big Horn County. The day cloud phase loop (bottom right) shows that this is a slow-moving thunderstorm, but there is also a bunch of patchy/streaky high cirrus moving much faster over top of it. Looking at the OCTANE speed sandwich (top left), it appears that the convective updraft was assigned the speed of the faster cirrus (yellow/orange, ~80kts). In reality, this updraft is moving much slower. For the sake of comparison and verification, notice the two updrafts over Stillwater County. These updrafts appear similar in nature based on the day cloud phase imagery, but the Stillwater County storms do not have any high cirrus contaminating the signal. As such, they are assigned a proper velocity on the OCTANE speed sandwich (green, ~30kts). There are also some artifacts in the divergence (bottom left) with the Big Horn County storm.

–Insolation

Tags: None

End of Day 1 Thoughts

Thoughts at the end of Day 1…

The LightningCast product I think would be VERY useful for DSS. Overall, when seeing it perform in real-time, the increasing LC probabilities seem to eventually correlate well with GLM flash density. I look forward to using the DSS form this week and seeing how that works for specific sites.

The GREMLIN product seems to be a great way to see the overall picture of precipitation (say, for a region). I think it struggles with precipitation intensity a bit (>45 dbZ) both for storm cells and for heavy stratiform precipitation. At the “storm” level, I have seen instances of the model not following the evolution well (either too intense or not enough).

For OCTANE, it was easier to pick out an example of CI and divergence with the IR versus the Visible products. I could use the direction product on its own in operations, but I really like having the speed, direction, and cloud top divergence all together in a 3 panel to identify convection.

PHS did a great job today identifying convective initiation when overlayed on visible satellite imagery. I look forward to seeing how this performs in other areas of the country this week.

Still learning how best to utilize the GLM DQP; but, when looking over Cuba, I was able to better understand how it locates areas where the data might not be the best. I hope to learn more about this product through the week and see more examples of its application.

Forecaster Cumulus

Tags: None

OCTANE Signal With New Convection Near Chicago

At 1910Z on May 20, OCTANE picked up a good signal on convection developing just northwest of Chicago, IL. On the Speed Direction product, there was a well-defined difference in direction vector on the southeast flank of the anvil (250deg) versus the western flank of the anvil (200deg).

 

There is also a subtle signal on the OCTANE speed sandwich product, though not as pronounced. Regardless, for a fresh storm just reaching severe levels, it was worth noting.

 

–Insolation

Tags: None

Identifying potentially stronger thunderstorms with IR OCTANE divergence and LightningCast

 

Displayed here are OCTANE products built from both visible (right panel) and IR (left panel). What caught my eye is the characteristic of the OCTANE direction in the IR panel, where directional divergence is showing up much more clearly than in the visible OCTANE product. This is especially showing up in the northern set of storms, where LightningCast is also highlighting for a probability of >10 flashes in the next 60 minutes (shown below). These both highlight an area with a higher probability for more intense convection in the near-term.

-Joaq
Tags: None

Waiting For Convection To Go

While looking for thunderstorm initiation, my eyes are turned towards anything that informs me whether convection will develop further or decay. There have been several things to note while waiting for instability to move into the region.

The main forecast challenge is the favorable ingredients to produce severe convection has to be advected into the region. The WRF with PHS data demonstrates that initial convection intensifies later in the day as better instability arrives across the region on the bottom right panel. This also corresponds with better dynamics noted across the others entering eastern Colorado. Model reflectivity on the bottom right increases as a result of better forcing over time. Until then, it’s monitoring at what point things actually start turning the corner and using the new tools available to find that point.

 

And so far, the things found have been what it’s not. So here are some things being observed in this period of waiting. At the beginning of the day, one of the things I noticed was related to the OCTANE detecting warming and cooling. As clouds moved off snowy foothills, it was apparent on the viewer where water clouds appeared warmer than the snow surface, and caused a pocket of cooling to appear on the eastern foothills once satellite could see the frozen snow, and warming whenever a cloud layer shifted overhead obscuring the snow. In the middle of convection, this would probably be irrelevant, but just a thing to note while we wait.

 

 

I like the idea of mashing together several products that we’re testing at once. So, I’ve applied the LightningCast, WRF with PHS CAPE, and GLM. The idea will be to monitor how the storm is pulsing compared to with what information is provided from PHS. It’ll also help track in what area LightningCast is lighting up and whether it is heading towards a favorable or unfavorable environment. With LightningCast aiming for detection within an hour, it began highlight a cell that corresponded with favorable instability. The combination of these two helped me hone in on this cell as being more likely to produce lightning than a similar LightningCast to the northwest. The 10% contour formed just before 20z, and steadily increased leading up to the first flashes on GLM roughly 30-40 minutes later. Nicely done!
While waiting, a small cell caught my eye. The area was almost completely clear, and showed very dark on visible imagery, to being cloud covered near Palmer. This made it appear this was about to blow up, but then you can see the OCTANE tool quickly reverse course once it becomes clear it will not develop and it begins to come down on visible.
Off to our west, there were a couple cells. Analyzing the tool on GREMLIN, the southern cell was less intense on GREMLIN compared to MRMS, and reversed for the storm to the north. However, neither are particularly intense, but it does indicate to keep a watchful eye and use other products like GLM to assess intensity.
As we move past 22Z and how the WRF with PHS data, it has done an excellent job forming the convection near the Denver Airport, but by Shamrock/Leader/Adena, that cell has not formed. This is creating a region of spurious data due to convective feedback. Some of the model appears to drive convection by the cold pool from this storm meeting instability advecting in from the east. It then focuses on this cell over the others, but this appears unlikely to verify at this point given how it is performing so far. By 00z, the 0-3km SRH bullseye creeps above 1600 m2/s2 moving towards Fremont. I won’t put the image of the new cycle that just came in, but the bullseye got more dramatic over 2000 m2/s2. Not sure if how much those magnitudes are in the realm of possibility.
One of the interesting behaviors lately has been a few storms forming in the cold pool as we approach 23Z. There has been convection developing on the western side of decaying cells. This has me thinking about how this would look for backbuilding precipitation. Would it have this look of the cool purples remain anchored in place while reds for new convection continuously appear to upstream that rides atop the areas of divergence? The signals may not appear robust, since there may not be fast storm motions.
Looking back at LightningCast, I have noted the known limitation of the forecast trying to bridge separate pieces of convection. The gap seems quite large though, and I wonder if there may be other means to QC the LightningCast with existing radar without making it slow to process. Or we can trust that the human eye is capable of noting that radar will confirm the lack of reflectivity at -10 C or higher.

That’s all I have today!

Kadic
Tags: None

OCTANE – IR Example of CI and Divergence

Found an example showing the application of OCTANE using IR – convective initiation and eventually divergence. Can see this in the color differences in the speed (NE) and direction (NW/SE) IR panels in the top left and top right in the image below, but also the cloud top divergence panel (bottom left). Could use the products alone (especially the direction panel), but I like seeing all three together to have the whole picture.

OCTANE (from AWIPS) using IR showing CI and divergence (20 May 2024)

Forecaster Cumulus

Tags: None

Color Curves Reign Supreme in OCTANE Products

OCTANE Night Direction and Speed Products

Today’s challenge was to try and see if we could draw out features better in both the OCTANE Night direction and speed products. The night products rely on IR satellite imagery and the lower resolution washes out a lot of the features we can normally see in daytime imagery. The easiest way to try and attain this was to first play around with the color curves in the IR brightness temp (CH-13-10.35um) overlay. Adjusting the colormap starting with black at 40 to white at -45 back to black at -80 then interpolating the ‘Alpha’.

Original OCTANE Night Color Curve – Direction

New OCTANE Night Color Curve – Direction

 

 

 

Original OCTANE Night Color Curve – Speed

 

 

 

 

New OCTANE Night Color Curve – Speed

Tags: None

HWT Day 4: Freed from MCS

Supercells of Midland, TX

As always, the first thing I did when I sat down this afternoon is AWIPS is immediately start fooling with the color tables. Today’s chimera was a combination of OCTANE Cloud Top Divergence and Cooling with MRMS Reflectivity at -20° C. MRMS was modified to only show values that exceeded 40DBZ to interrogate the relationship between cloud top divergence and highest reflectivity. At this point in the week, I’m throwing science against the wall to see what sticks.

My primary radar was MAF with MESH overlay for estimated hail size greater than two inches. Taking a look at MAF sounding this morning, it’s giving me big hail vibes and I wanted to see how MESH correlated with the convergence signatures from OCTANE.

 

Spice Level: Cayenne  🌶🌶🌶

At first glance of the Midland sounding I’m drawn to the fact that we have a substantial amount of CAPE (~3000J/KG). A little bit of a CAP at 700MB should be quickly overcome as there is a pretty good clearing in the clouds over most of Midland’s CWA. Lapse rates from 7-500MB is nearly 9C/KM, with a pair of dry layers from 8-500MB and between 5-300MB. Our hodograph, while not perfect, is generally a straight line from left to right.  Effective shear is around 45kts. My conclusion: hail. Possibly big hail, and we may have a chance of some splitting cells at some point today.

One of the cool things we noticed that the OCTANE Divergence/Cooling product picked up a splitting super cell around 15 minutes before the radar did. This was really cool and could be an excellent way of identifying splitting supercells and getting out warnings with an extra 10 minutes of lead time.

 

 

The inverted images on the OCTANE DIV/COOL product I think does a good job of highlighting areas in which those storms have entered an environment in which they are ready to split. Studying splitting supercells using sat imagery may give us abetter understanding of when storms are more likely to split.

Thanks for accepting me into this HWT! I got a lot out of it and am excited for what satellite can do for ops in the future!

-Charmander

Tags: None

Making it how I like it- A look at different ways to view OCTANE

Below I want to provide some (4) examples of how I wanted or needed to adjust the OCTANE products to make the displays work best for me.
The two below graphics are of the octane direction product. Notice a difference between the two? The one on the bottom should look more sharp. The difference was normalizing the reflectivity of the red visible satellite channel (CH 2) so that the visible imagery comes out sharper. While done automatically o nthe CIRA slider product, it is not yet functional in AWIPS. This is a reminder that if you are using this product in AWIPS (currently) you need to keep manually updating the sharpness.

 

Here is another example from the speed product where the top image has not been normalized for the zenith angle and the bottom one has been.

 

This is definitely a feature that I would want to see included before release on AWIPS because while it is not an inconvenience to adjust it, it is easily forgotten in the midst of warning operations.
Example two of making OCTANE look how I like it.
While trying to learn how to interpret the direction product from OCTANE, I was offered the barb alternative available on the CIRA slider. I was not a fan. While the direction product has been the most difficult to interpret

 

Example three of making OCTANE look how I like it.

Here I changed the bottom left of the octane 4-pannel. This was the Divertgence and cooling product. I was discussing with the developer how my eyes were tiring looking at the cyan field after a shift (bottom image) and that I thought it was washing out the divergence and the cooling fields some. We remedied this by lowering the saturation on the cloud top height field. I thought 45 percent saturation was preferred because I was cautioned that going any lower would not allow a forecaster to differentiate the cooler convective cloud tops and the white Red-visible cloud tops of lower clouds.

 

 

Example four of making OCTANE look how I like it.
I was struggling to interpret and use the direction tool, which I believe to be on me and not on the tool. To try and remedy this, I was playing around with the color scheme of the direction parameter. The top display shows the regular color scale from the developers and on the bottom is the one I provided input to create. The reason I went for this color comboe

 

 

-Kilometers
Tags: None

Using GREMLIN/OCTANE alone to Assess Mesoscale Conditions and Monitor Storm Intensity

Quick MesoAnalysis Comparison

Using the OCTANE speed sandwich we were able to quickly assess the SPC mesoanalysis of upper level winds entering our CWA. The SPC mesoanalysis indicated upper level winds of around 100 kt spreading through the Big Bend part of TX ahead of an upper level trough. This analysis was quickly confirmed by the OCTANE speed sandwich data. High cirrus was streaming into the region ahead of ongoing convection and was sampled at 105 kt in the OCTANE data. This real time analysis supports the objective analysis by SPC and yields higher confidence in the data.
Image 1: The OCTANE speed sandwich showing velocities >100 kt across the Big Bend region of TX spreading into the southern parts of the SJT CWA.
 
Image 2: The SPC mesoanalysis of 300 mb winds indicating a 100 kt upper jet spreading into the Big Bend region of TX.
 
 
GREMLIN/OCTANE to Monitor Convection without Radar
 
We were tasked with monitoring convection across the SJT CWA with an ongoing DSS event in San Angelo. While convection remained to our west and east, there were a few thunderstorms that developed across the northern part of our CWA. We did not have radar data, but were able to use OCTANE speed/direction products to assess storm strengthening trends though the afternoon. In combination with the GREMLIN radar emulation, we were confident in our assessment of storm strength even without supporting radar/MRMS data.

Image 3: The two storms of concern are to the north of San Angelo and are noticeable in the speed/direction imagery. There were a couple notable periods of cloud top cooling and increased divergence, but the uniformity in the mid/upper level wind speeds and direction increases confidence that these storms are either maintaining intensity or weakening.

 

Image 4: The GREMLIN data showing two distinct cells across the northern part of the CWA. These storms maintained intensity for about 30 minutes without any noticeable change in the OCTANE data. As the OCTANE wind speeds decreased, the GREMLIN data showed that the storms diminished overall.

 
These two products (OCTANE speed/direction and GREMLIN) used together can increase confidence in warning/decision makingparticularly in the absence of radar/MRMS data. While there are some latency concerns with GREMLIN, further testing of these data should be continued.
Tags: None